
Page 142 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

ABSTRACT

Teamwork skills, risk analysis, project management,
requirements elicitation, and negotiation among clients and
users are required competencies for implementing software
development processes. Development of such competencies is
hard when you follow traditional teaching methods. For this
reason, an ongoing challenge educators face is related to
finding new strategies to be used in the classroom for achieving
this goal. Distributed Software Development (DSD) is a way to
combine such competencies in a real environment.
Consequently, in this paper we propose a DSD experience
based on the development of a game in order to give the
students a practical view about DSD. This approximation in
academic environments allows the students for becoming active
during their learning process. Also they learn to be careful with
their challenges and risks when they start to develop software
applications in industry.

INTRODUCTION

Software development process is complex and it demands a

set of soft competencies to its practitioners. In fact, students
need to know in depth teamwork, risk analysis, project
management, requirements elicitation, negotiation among
clients and users, etc., in order to be considered successful in
the software engineering industry.

Lectures and toy projects are the main strategies used by
software engineering educators. Even though such strategies
have been used for years in software engineering, they are
recognized to be unsuccessful to provide learning related to soft
competencies. So, several other strategies should be used in
order to improve the way students acquire soft competencies.

According to Ding and Yang (2012), DSD courses offer
collaborative help for improving cross-cultural understanding
among students, so they can be used as a solution for acquiring
knowledge in software engineering, while encouraging the

development of soft competencies. Implementation of
collaborative courses should be promoted, involving academic
managers, and fostering the participation of educators beyond
the academic experience.

With this aim, we propose the development of a game by
using a DSD experience based on the work of students coming
from three Colombian Universities: Universidad Nacional de
Colombia (UNAL), Universidad de Medellín (UdeM), and
Institución Universitaria Salazar y Herrera (IUSH). The work
described in this paper was carried out during a 16-week
academic semester. The software development activities
performed by students were related to requirements elicitation;
functional and non-functional requirements; use case design,
detailed design, prototyping, and implementation of a software
application. The work teams had to meet each other in order to:
(i) produce, deliver, and present specific work products; (ii)
interact with work teams coming from different universities;
(iii) evidence collaborative work and cooperative
communication practices; (iv) assign roles and responsibilities;
(v) reuse and share advances in work product design.

Fagerholm et al. (2013) recognize one of the main
advantages of DSD in academic environments: the students
could take ownership of their relevance in the process and—in
this way—they learn to be careful with their challenges and
risks when starting to develop software in industry. Even
though the students are located in the same city, we discover
cultural, behavioral, and even methodological differences
among the students—and also among professors leading the
project.

This paper is organized as follows: first, we present some
background related to DSD; then, we state the problem we face;
next, we propose the DSD experience; after that, we discuss the
lessons learned; and finally, we summarize the conclusions of
this experience.

BACKGROUND

Educators have employed several teaching strategies and

A DSD Experience for Game Development
Among Colombian Students

Carlos Mario Zapata-Jaramillo

Universidad Nacional de Colombia, Colombia
cmzapata@unal.edu.co

Bell Manrique-Losada

Universidad de Medellín, Colombia
bmanrique@udem.edu.co

Liliana González-Palacio

Universidad de Medellín, Colombia
ligonzalez@udem.edu.co

María Eugenia González

Institución Universitaria Salazar y Herrera, Colombia
maria.gonzalezp@salazaryherrera.edu.co

mailto:cmzapata@unal.edu.co
mailto:bmanrique@udem.edu.co
mailto:ligonzalez@udem.edu.co
mailto:maria.gonzalezp@salazaryherrera.edu.co

Page 143 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

experiential learning techniques in order to improve teaching
effectiveness on competencies like teamwork, risk analysis,
project management, elicitation requirements, and negotiation
among clients and users. These skills are essential because
modern software engineering is global and often done in
globally distributed teams. Also, software industry is looking
for decentralizing application development, and promoting
architecture, knowledge, and components reuse (Damian et al.,
2012). Distributed Software Development (DSD) is an ideal
scenario allowing students for obtaining these and other skills.
DSD allows team members to be located in several remote
locations during the software development lifecycle, thus
making up a network of distant sub-teams (Jiménez et al.,
2009). DSD allows software companies for solving global
issues like geographical distance, decentralized training, and
cultural differences.

DSD has several examples related to industrial and
educational studies. In this Section we analyze some
contributions. In their work, Jiménez et al. (2009) make a full
systematic state-of-the-art review about DSD. They explore
some DSD aspects researchers have focused until now. Jiménez
et al. (2016) extract the following DSD critical success factors:
(i) intervention of human resources; (ii) improvement based on
the company needs; (iii) human resource training of DSD tools
and processes; (iv) activity registry with information about
pending issues, bugs and people; (v) knowledge management
and communication among team members.

Sengupta et al. (2006) report a research agenda for DSD
concepts with four main areas: collaborative software tools,
knowledge acquisition and management, testing in a distributed
setup, and process and metrics issues.

DSD contributions are focused on tools, processes, and
metrics, but few authors have research on DSD educational
environments. Kuhrmann and Münch (2016) propose a course
unit related to an environment in which students can learn and
experience the role of different communication patterns in
Distributed Agile Software Development (DASD). Students
understand the importance of communication by experiencing
the impact and constraints of communication channels and the
effects on collaboration and team performance. The authors
provide a detailed design of the course unit to be implemented
in further courses (Kuhrmann & Münch, 2016).

Fortaleza et al. (2013) discuss the importance of developing
communication skills in students. They present an observational
study aiming to improve communication and collaboration
skills by using DSD. They demonstrate the use of DSD in
classroom is accelerated by the adoption of communication and
collaboration practices.

Damian et al. (2012) describe the goals, design, and initial
challenges found in teaching a global DSD course in
collaboration between the University of Victoria—Canada—
and Aalto University—Finland. The collaborative development
is based on the Scrum methodology. They conclude the main
challenges they face are differences cultures, time, courses, and
curricula, as well as technical and time-zone issues.

PROBLEM STATEMENT

Software engineering industry must be considered in

modern curricula in order to respond to its demands by adding
or improving graduate student skills. Commonly, software
development companies express they are dissatisfied with the
lack of some competencies exhibited by graduates/alumni from
Higher Education. "Soft competencies" are the typically the
most argued missing competencies—e.g. interpersonal

relations, personal attributes, communication, and leadership,
among others. Considering software engineering as an inexact
science—prone to be directly affected by perceptions,
subjectivities, and dependence on expertise of those responsible
for its execution at software projects—we can argue traditional
teaching methods like lectures are ineffective for developing the
soft competencies relevant to this knowledge area. For this
reason, an ongoing challenge educators face is related to find
new strategies to be used in the classroom for achieving this
goal.

Fortaleza et al. (2013) reinforce the importance of
simulating real environments in academic environments,
including the ability to unexpectedly change the requirements.
We can develop socio-technical skills, soft competencies, and
effective work in a global context by following classroom
strategies like DSD, in opposition to traditional strategies
commonly used for developing such competencies. DSD has
been difficult to disseminate/sustain due to high adoption costs
and difficulties to find teaching partners (Faulk & Young,
2012). So, we need to explore the application of DSD on
educational environments.

Most practices in software development classrooms remain
hidebound in course content and student experience, since most
of them are introduced in projects where teams, conditions, and
needs are simulated. In addition, such simulated projects are
made by fostering interactions among classmates in simulated
environments—with the same time zones and cultures. In actual
industrial practices, the culture, geography, and time zone
differences, as well as the coordination and control problems,
are common problems to be faced (Bosnić et al., 2011; Cramton
& Hinds, 2005). The aforementioned reasons lead us to propose
a DSD experience based on software development.

PROPOSAL: DSD EXPERIENCE

EXPERIENCE OVERVIEW

The DSD experience is based on the development of a
game in order to give the students a practical view about DSD.
The students coming from three Colombian Universities should
design and implement a game as a learning strategy for a
particular scenario. The experience framework is based on four
different software engineering courses belonging to Systems
Engineering programs: information systems, requirements
engineering, software engineering I, and software engineering
II. Such courses have related learning objectives, which was
relevant for implementing the experience. The general goals of
the experience are:

1) Developing—in a real environment—competencies related

to teamwork skills, risk analysis, project management,
requirements elicitation, and negotiation among clients and
users;

2) Teaching software engineering skills and strategies by
emulating a real-world environment by using DSD
practices;

3) Practicing several collaborative tools and technologies for
providing effective support to communication, software
design, software construction, and testing among global
teams;

4) Exposing students to cultural differences in a DSD context
for improving cross-cultural understanding among them.

Page 144 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

SCENARIO FOR THE GAME DESIGN

A concept of operations was defined comprising the
primary events for designing a simulation game. Such a concept
was edited based on previous approaches with other
universities, as well as some rounds of play with similar
scenarios which served as the basis for this scenario. The
concept of operations is named “software boulevard,” a
simulation of a software company which develops software
projects. Each company includes four roles: project leader,
analyst, developer, and tester, who are intended to bid and
develop projects in order to increase the bidding capacity of the
company (see the full concept of operations in the Appendix). A
list of secondary events was also specified in a round of play to
facilitate the development of the assignments for each team
work. Professors agree on and define a set of assignments
aligned to the learning objectives of each course and institution,
and considering those which expectedly have a positive
influence upon the previous goals of the DSD experience.

GAME SETUP

Students belong to three Colombian Universities located in
the same city (Medellín, Antioquia): Universidad Nacional de
Colombia (UNAL), Universidad de Medellín (UdeM), and
Institución Universitaria Salazar y Herrera (IUSH). The
experience was carried out during a 16-week academic semester
in the following three stages:

Phase 1: Preparation
During the first eight weeks, work teams were formed with

two students belonging to the software engineering course of
UdeM and one student of the software engineering course of the
IUSH. Such work teams designed the requirements document
with functional and non-functional requirements, and use cases
with their respective contracts.

During the last eight weeks, work teams were formed by
students from UNAL and UdeM. These work teams were in
charge of the detailed design, prototyping, and implementation
of the software boulevard simulation.

Phase 2: Interaction

 Group 1: Interaction UdeM-IUSH. Based on the common
concept of operations, students started the interaction
UdeM-IUSH. As a starting point of this interaction, the
students review and analyze the concept of operations, the
specifications, and the game rules.

 Group 2: Interaction UdeM-UNAL.

Student interaction should comply a set of rules in the DSD

interaction. The most relevant rules are the following:
(i) producing, delivering, and presenting specific work

products;
(ii) interacting with work teams coming from different

universities;
(iii) evidencing collaborative work and cooperative

communication practices;
(iv) assigning roles and responsibilities;
(v) reusing and sharing advances of work product design.

EXHIBIT 1.
STRUCTURE OF THE TEAMS

Page 145 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

Phase 3: Analysis and result presentation
The analysis of the experience and the generated results—

including the inquiry of the perceptions from the students and
professors—was the last phase of the DSD experience. Students
should generate work products and results defined by the work
team, and present a report comprising the evidences of the
process, DSD interaction with the other university, and the
results achieved.

IMPLEMENTATION

Teams and Roles

We split the students into four distributed teams, each
consisting of 7-8 members. Each team comprises of 3-4
students from UdeM and 4-5 students from IUSH or UNAL
(see Exhibit 1). The product owner, was a member of UNAL.
As the Group 1 students had worked on the project for two
months before the Group 2 students joined, one of them with
the professor were selected to function as the joint for the
following teams.

Project Initiation

The UNAL professor visited the other two institutions
before the first interaction started (Group 1), to give a ‘face’
behind the idea and the whole project by using lessons learned
in previous experiences. When the Group 1 started, such
professor and a subset of each team kept in touch interchanging

extensive technical knowledge of the project and suggesting
DSD practices.

Development Process

The development process was an implementation of a
particular method adopted by each team work looking for
distributed projects, along two months each interaction.

At the beginning of each phase, the teams do synchronous
planning and task assignment, according to the requirements
specified. Work teams participated in a joint videoconference
session and similar sessions for tracking and progress control as
an initial interaction with stakeholders.

Each team work had a module of ‘software boulevard’ on
your responsibility, as follows:

MODULE 1: ESTIMATION

This is the module for the Project manager who has the
following main processes:

 Estimating cost and time

 Puzzles solving for obtaining resources

 Recruiting team members

MODULE 2: ADMINISTRATION
This module belongs to the administrator and it has the

following main processes:

 Registering and updating companies, roles, and users

 Registering and updating question bank

EXHIBIT 2.
EXAMPLES OF WORK PRODUCTS DESIGNED BY TEAMS BELONGING TO GROUP 1

Page 146 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

 Defining diagrams for solving puzzles

 Creating projects

 Monitoring process

MODULE 3: SOLVING QUESTIONS

This module belongs to all team members (analyst,
developer, tester) and it has the following main processes:

 Solving questions for role certification

 Solving questions for developing projects

 Obtaining skill level

MODULE 4: COMMUNICATIONS

This module belongs to all team members (analyst,
developer, tester) and it has the following main processes:

 Communication among team members by using
internal e-mail

 Communication among companies by using internal e-
mail

 Communication administrator-companies by using
internal e-mail

Group 1: Interaction UdeM-IUSH.
We show some evidences of the work products designed by

the work teams in this interaction in Exhibit 2. Work teams
designed the requirements document comprising functional and
non-functional requirements, and use cases with their respective
contracts.

Group 2: Interaction UdeM-UNAL.

In this group, the work teams from UdeM and UNAL are in
charge of generating the work products related to the detailed
design, prototyping, and implementation of the ‘software
boulevard’ simulation. Some of such work product are shown in
Exhibit 3.

LESSONS LEARNED

One of the situations described in this work was evident

during the development of the experience made by the first
group of work teams (UdeM & IUSH): the ambiguity of the
concept of operations. In fact, professors should review together
several times the concept of operations. Such review involved
reprocesses and disagreement among several teams.

Bosnic et al. (2013) provide a list of the risks associated

EXHIBIT 3.
EXAMPLES OF WORK PRODUCTS DESIGNED BY TEAMS BELONGING TO GROUP 2

code name description formule related

business rules
BR001 send message to

recruit
when no members of the project manager

sends a message to members to recruit
lack member

BR002 receive message to
recruit

receives only available members members = available BR001

BR003 send message to
answer recruit

the member must send message when
receive de message

BR004 send message to
resource request

the member must send message when
resource is zero

resource amount = 0

BR005 send message to
project notification

the project manager sends a message when
stage of project assignment is in analysis

stage project
assignment = analysis

BR008

Page 147 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

with the orientation of a DSD course. Our work led us to add
another item to the list: plagiarism in geographically distributed
environments. Some students can take advantage of presenting
other team work as proper, since they believe professors
involved in the process are unable to detect fraud. So, another
"soft skill" we can argue for DSD projects in the classroom is
related to honesty and ethics.

In the first phase of the work, some inconveniences arose,
since some information was not transmitted to the groups of the
two universities in a synchronous way. As a consequence, some
students partially advanced the project with minimum
interaction of the other group. So, they supposed they already
prepared much of the work and rejected the contributions they
received from members of the other University. This situation
accentuated one of the reasons presented by Brindley et al.
(2009) related to the resistance exhibited by some students to
work in a group, considering their peers are unproductive. So,
another lesson learned is that both the planning of the subject
matter on which the students are going to do a collective
construction, and the supporting resources should be
synchronously transmitted to the study groups.

Professors in charge of the first part of the project defined
the evaluation metrics for that part, and also jointly reviewed
and qualified the works in order to assess the same items for the
three work team members. However, neither the means nor the
format for a unified assessment of the students was allowed,
avoiding the assessment of their joint work until the end of the
project.

The evaluation metrics included the student personal
perception about the DSD model, but it should have been more
precise and rigorous for the assessment of the collaborative
work. Therefore, the metrics should not be limited to validating
the technical consistency of the work products made by each
student, but to showing the joint work during the whole process.

Prior to the beginning of the interactions, we need to make
each work team aware about the importance of DSD and the
benefits it brings to their training process. Filipovikj et al.
(2013) suggest some tips: remember students we are different in
formation, position, and status. Such differences can generate
some attitudes like "if they do not ask me, I do nothing," "I will
not respond to them in time," "I will not waste my time meeting
with them," and "what they have done does not work."

Another lesson learned was the need to define common
deliverables, despite the differences among courses. In the
second part of the project, we tried to continue with the
deliverables defined in each university, but the differences
among them and the way to assess them generate great concern
to some students and anger to others.

IUSH students did not know the result of the work they
started, leading to demotivating some students. Also, lack of
responsibility was generated in others, as they "disconnected"
the result and the consequences of their actions. In this case, the
lessons learned are related to a final feedback was required with
all the working groups involved in the project life cycle.

Stakeholders should not only belong to the students of a
single university. This allows the orientation of the work to be
biased by the interests of a group. To this concern, Lima and
Almeida (2012) make some suggestions for group leaders.
From the experience, we believe collaboration and good
relations among faculty of the groups is perhaps more relevant
than the collaboration among students. In the case of this
project, collaborative faculty work towards was not enough by
the end of the project and some students belonging to the first
group did not know the result of the software project.

We would expect students coming from the same city to be

similar in culture and knowledge. However, this DSD
experience led us to detect several culture differences among
students. For example, UdeM students were part-time workers
while UNC students were full-time students, leading to
difficulties for arranging meetings among them. Also,
professors had different ways of teaching and pedagogical
methods. One of the main lessons learned in this project is
related to the acceptance of differences among participants of
the DSD experience.

CONCLUSIONS

In this paper, we summarized the experiences acquired

during the development and implementation of a DSD project
between UNal, UdeM and IUSH, in their respective software
engineering courses of the Systems Engineering program,
which involved four different leading professors and the same
number of courses at different levels of training. During the first
eight weeks, work teams were formed with two students
belonging to the software engineering course of UdeM and one
student from the software engineering course of the IUSH. Such
work teams designed the requirements document with
functional and non-functional requirements, and use cases with
their respective contracts. The rest of the semester, some other
work teams were formed with students from UNAL and UdeM.
These work teams were in charge of the detailed design,
prototyping, and implementation of the application. A common
concept of operations was used as a starting point of this
experience.

Although the DSD experience was new for most of the
students and professors, the initiative was adopted without any
reticence. Consequently, the participant professors were aware
about the importance of adapting and adopting new trends of
globally distributed working groups. We could also evidence
the pedagogical commitment of the leading professors of each
group when assuming the challenge of incorporating new trends
in their work plans.

From the lessons learned, we can summarize that—prior to
the beginning of the courses—we need to carefully plan the
activities, meetings and agreements to be carried out during the
whole life cycle of the project to be developed. The planning
should be rigorous and at the same time flexible in order to
adapt to possible unexpected changes arising when the activities
are developed, in a similar way to projects in business
environments.

The implementation of the DSD project among four groups
of three universities made possible to highlight the importance
of developing the "soft skills" of all those involved in the
project (professors and students), especially: ethics, sociability,
empathy, active listening, time optimization, work under
pressure, and respect the opinions of others. By the end of the
experience, a verbal survey was carried out among the
participants and the most common concern among students was
the difficulty for arranging meeting places with their colleagues
from other universities.

Professors of the first phase detected some differences
among theories and examples provided by each group, and
leading to apparent theoretical contradictions in the way
professors teach. However, software engineering is not an exact
science, and opinions should be different among professors,
since problems lack a single solution in this science.
Acceptance of differences among participants is one of the most
remarkable lesson learned in this project.

Page 148 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

Bosnić, I., Čavrak, I., Orlić, M., Žagar, M. & Crnković, I.
(2011). Avoiding Scylla and Charybdis in Distributed
Software Development Course. In Proceedings of
CTGDSD’11, Honolulu, USA 2011.

Bosnic, I., Ciccozzit, F., Cavrak, I., Mirandola, R., & Orlic, M.
(2013). Multi-dimensional assessment of risks in a
distributed software development course. In 3rd
International Workshop on Collaborative Teaching of
Globally Distributed Software Development (CTGDSD),
San Francisco, USA, 2013. 6-10.

Brindley, J. E., Walti, C., & Blaschke, L. M. (2009). Creating
Effective Collaborative Learning Groups in an Online
Environment. The International Review of Research in
Open and Distributed Learning, 10(3).

Cramton, C.D. & Hinds, P.J. (2005). Subgroup Dynamics in
Internationally Distributed Teams: Ethnocentrism or Cross-
National Learning. In B.M. Staw and R.M. Kramer, eds.,
Research In Organizational Behavior. 231-263. Oxford:
Elsevier Ltd.

Damian, D., Lassenius, C., Paasivaara, M., Borici, A., &
Schröter, A. (2012). Teaching a globally distributed project
course using Scrum practices. In Collaborative Teaching of
Globally Distributed Software Development Workshop
(CTGDSD), 2012. 30-34. Zurich, Switzerland.

Ding, J., & Yang, B. (2012). Teaching Software Engineering
with Global Understanding. In Collaborative Teaching of
Globally Distributed Software Development Workshop
(CTGDSD), 2012. 11-15. Zurich, Switzerland.

Fagerholm, F., Oza, N., & Münch, J. (2013). A platform for
teaching applied distributed software development: The
ongoing journey of the Helsinki software factory. In 3rd
International Workshop on Collaborative Teaching of
Globally Distributed Software Development (CTGDSD),
San Francisco, USA, 2013. 1-5.

Faulk, S. & Young, M. (2012). Chapter 6.7: Teaching Globally
Distributed Software Development (DSD): A Distributed
Team Model. University of Oregon, USA.

Filipovikj, P., Feljan, J., & Crnković, I. (2013). Ten Tips to
Succeed in Global Software Engineering Education: What
Do the Students Say? In: Proceedings of the Collaborative
Teaching of Globally Distributed Software Development -
Community Building Workshop (CTGDSD3), San
Francisco, US.

Fortaleza, L., Vieira, S., Junior, O., Prikladnicki, R., & Conte,
T. (2013). Using Distributed Software Development in the
improvement of communication and collaboration skills in
SE courses: An observational study. In 2013 26th
International Conference on Software Engineering
Education and Training (CSEE&T). San Francisco, USA,
2013. 139-148.

Jiménez, M., Piattini, M., & Vizcaíno, A. (2009). Challenges
and improvements in distributed software development: a
systematic review. Advances in Software Engineering, 1-
16.

Jiménez, M., Piattini, M., & Vizcaíno, A. (2016). challenges
and improvements in Distributed Software Development: a
Systematic review. Data Structure and Software
Engineering: Challenges and Improvements, 225.

Kuhrmann, M., & Münch, J. (2016). Distributed software
development with one hand tied behind the back: A course
unit to experience the role of communication in gsd. In:
Proceedings of the IEEE 11th International Conference on
Global Software Engineering Workshops (ICGSEW),
Orange County, US.

Lima, C., & Almeida, E. (2012). Five Years of Lessons Learned
from the Software Engineering Course Adapting Best
Practices for Distributed Software Development. In:;
Proceedings of the Collaborative Teaching of Globally
Distributed Software Development CTGDSD, Zurich,
Switzerland.

Sengupta, B., Chandra, S., & Sinha, V. (2006). A research
agenda for distributed software development. In:
Proceedings of the 28th international conference on
Software engineering, Shanghai, China.

REFERENCES

Page 149 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017

CONCEPT OF OPERATIONS: SOFTWARE
BOULEVARD

Software Boulevard is a simulation of a software company
including four roles: project leader, analyst, developer, and
tester. Companies are intended to bid and develop projects in
order to increase the bidding capacity K of the company. Bigger
numbers of the K unit represent bigger capacity for developing
projects. A company starts with zero K and it needs to develop
the so-called “instant projects” for increasing the K unit and
reaching the K unit demanded by “bidding projects.”

Projects are developed by using a waterfall approach. Once
the project is assigned to the company, the analyst start to
model the project; then, the developer codes the project; finally,
the tester tests the project. The way these roles make such
activities is simulated by asking several multi-choice questions
related to their competencies. Questions can have 1–3 out of 4
answers, but the role doesn’t know how many answers a
question have. A question is overcoming when all the related
answers are correctly selected. The questions can be solved by
the roles when the project manager acquire enough resources
for the project. One example of analyst question is the
following:

QUESTION: Some kinds of UML diagrams are:

a. Goal Diagram
b. Class Diagram
c. Process Diagram
d. State Machine Diagram

The answers to this questions are options b) and d), and the

analyst must select such options for passing the question.
Similarly, the developer and the tester must answer their
questions for completing the project. The waterfall approach
demands the analyst must answer all his/her questions before
the developer starts to answer his/her questions. Similarly, the
developer must finish before the tester starts to answer his/her
questions.

Instant projects deliver K units to the company after all the
questions defined are answered by the team members.

Bidding projects are different to instant projects because
they need the project manager to estimate both the cost and the
time of the project. Project managers need to generate resources
for estimating projects. Depending on the amount of resources
gained by the project manager, the remaining team members
can perform their functions, either to develop the project or to
improve their competencies. The way a Project Manager
generates resources is by solving sliding puzzles of diagrams
similar to the Exhibit 4, but with parts of the diagram instead of

numbers. Once the Project Manager completes the puzzle, n
resources are generated and he/she can start to estimate cost and
time of a bidding project. When both values are in the
threshold—e.g., 10% above/below the value—of the defined
values for the project, such a project is assigned to the company
and the team members can proceed to complete the project in a
similar way to instant projects. Each team member can perform
his/her functions by using the amount of project resources
available (resources earned by the project manager). When a
team member identifies that there are not enough resources for
using, he/she should inform to the manager who must generate
more resources.

Another difference between bidding and instant projects is
related to the competencies the roles need for developing the
project. Competencies are defined by levels, so instant projects
require level zero for all of the roles. However, bidding projects
require the specified level for every role (from one to five).
Roles can reach their levels by the certification process.
Certification is simulated in Software Boulevard by asking
training questions, in a similar way to developing projects. A
certain level of competency requires an amount of questions to
be answered. Also, the turns for estimating project time and cost
can be used for answering questions for either certification or
project development.

All this process is constantly monitored and reported to all
of the participants of the simulation. Several charts can be used
for monitoring, for example companies vs. current K units,
questions answered by project/role, efficiency of the turns used,
bidding/instant projects assigned/completed by company, etc.

APPENDIX

EXHIBIT 4
EXAMPLE OF A SLIDDING PUZZLE.

