

Page 85 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

QUALITY ASSURANCE IN BUSINESS SIMULATION DESIGN

Jeremy J. S. B. Hall

Hall Marketing

jeremyhall@simulation.co.uk

ABSTRACT

This paper explores the elements of business simulations

that impact software (model) quality rather than learning

quality. The exploration draws on the computer software

knowledge base and extends this to take into account the

special characteristics of business simulation software.

Business simulation design is a creative art where the sim-

ulation models are complex and where the users are ex-

tremely wide ranging with limited knowledge of the simula-

tion software and are commonly very emotionally involved

- issues that necessitate a high level of software quality.

Business simulation model complexity is explored in terms

of model size, arithmetic calculations, cyclomatics, struc-

ture and dynamics. Error types are those normally associ-

ated with software (syntax, run-time and logical) and re-

quire testing using of black-box (functional) testing, white-

box (structural) testing, code inspection and, in additional,

for business simulations structural and dynamic testing.

But, as quality cannot be tested into the simulation, Total

Quality Management is vital and explored in terms of meth-

odology, software structure, modelling language, defensive

programming, refactoring, documentation and verification

support

Keywords: quality assurance, model verification, complexi-

ty, error types, testing, quality management.

INTRODUCTION

The heart of a business simulation is a model that at-

tempts to replicate the real world and consists of arithmetic

and logical statements. Besides the simulation model a

business simulator has other software components (Hall,

2011) whose purpose are to manage software use, decision

entry, reporting and, possibly, online help. However, this

paper concentrates on how one can assure and verify the

quality of the simulation model (software) rather than the

other software components or the ability for the simulation

to deliver quality learning. That is to say the paper explores

verifying that the software-based model performs as intend-

ed rather than validating that the software fulfils its intend-

ed purpose (Law & Kelton, 1991). A particular issue is the

conflict in all software design between engineering design

and creative design (Löwgren, 1995) and, arguably, for

business simulation this conflict is worse because of crea-

tive needs and aggravated by the use to provide business

learning to a wide mix of users who have an emotional

involvement. The creative design process hampers the abil-

ity to design quality software and the emotional engage-

ment of participants amplifies the impact of poor quality.

Designing a business simulation is a creative art

(Bellman et al, 1957; Goosen, 1981; Thavikulwal, 2004;

Bots & Daalen, 2007) where the simulation (model, deci-

sions and results) are built in an agile, iterative-incremental

process (Hall, 2005). The way the model and associated

data (variables, reports and help screens) grow over time

during the development of a complex business simulation

(the Training Challenge simulation) is shown in Figure 1.

 The model size, variable and report number patterns

over time show that these change in concert throughout the

design and this suggests an incremental progressive design

process. It seems reasonable to suggest that if the process

was not incremental there would be a long period at the

start of the design where the parameter, decision and report

needs were defined before the model was programmed.

Later, as the models linking decisions to results were devel-

oped, there would be minor increases to the number of vari-

ables, reports and help pages. Where software is designed

is an agile, lightweight way the requirements are emergent

(discovered during the project) and a particular weakness

of this approach is "poor overall quality" (Khan et al, 2011).)

Mohammad et al (2013) cites "poor documentation" as an

another weakness of agile design and that this has implica-

tions in terms of software testing, maintenance and com-

municating with users.

There are several usability issues - decision scope, the

range of users and user engagement. Participants have and

need virtually unlimited authority with their decision-

making and this means that the decisions entered into the

simulation can range from the reasonable to the unreasona-

ble. As a consequence, the designer must ensure that even

the unreasonable decisions do not "break" the model. The

simulation will be used by a wide range of participants and

tutors who will have differing levels of business

knowledge, computer literacy and, probably, no or minimal

knowledge of the simulation software. This range of users

will stress the model's quality as they may make mistakes

when entering decisions. The way business simulations

engage their participants is recognised but there is a down-

side, if something goes wrong this breaks engagement

(Aldrich, 2009) leading to disaffection. Although this is

true for other software (attempting to enter data into a bad-

ly designed web form comes to mind) with simulations a

problem does not just impact an individual in private, ra-

Page 86 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

ther it impacts several, perhaps, many learners in a very

public way. Even if the problem is resolved, trust in the

simulation and it's ability to deliver learning is likely to be

destroyed both for the participants and for the tutor using

the simulation.

COMPLEXITY

Business Simulation models are complex software and

the are several aspects of complexity (model size, arithme-

tic complexity, cyclomatic complexity, structural and dy-

namic complexity) that impact quality.

MODEL SIZE

Hall (2007) investigated model size, parameter and

report numbers for several business simulations. Four of

the simulations Hall explored had a duration of about a day

and their model sizes ranged between 964 and 2086 state-

ments, used between 476 and 588 variables and produced

between 112 and 209 different reports. A wider analysis of

twenty simulations with durations ranging from two hours

to two and a half days found model sizes ranged in size

from 271 statements to 2127 statements. These simulations

were created using Visual Basic and for models created in

Excel the model size would be substantially larger because

in terms of function points (QSM - Function Point Lan-

guages Table Version 5.0 2013) Excel typically requires

five times the number of lines of code. This means that, if

the models were developed using Excel the model sizes

could range from around 1000 to about 10000 lines of code

(and this does not include the lines of code for data storage,

reporting, decision-entry etc.). The model size metrics for

Excel based business models are relevant as their wide-

spread use means that their error rates have been researched

extensively. Freeman (1996) suggest that spreadsheet mod-

els with more than 150 rows (logic lines) has at least one

significant error and others have raised major concerns

about errors (Cook, 2006; Howard, 2005; Panko & Halver-

son, 1996; Panko, 2000; Rajalingham et al, 2000)). Alt-

hough this error rate is partly due to the nature of spread-

sheets it is also influenced by model size, arithmetic, cy-

clomatic, structural and dynamic complexity.

ARITHMETIC COMPLEXITY

Calculations in business simulations range from basic

accounting and operational calculations to complex non-

linear calculations and, on occasion, stochastic calculations.

A business simulation's core models can be separated into

the "white box" models that replicate the basic accounting,

work flow, supply chain elements, etc. and the "black box"

models that model consumer behaviours (Kotler, 1991),

staff effectiveness and efficiency, etc.. The complexity of

these models have been described in numerous ABSEL

papers (Gold & Pray, 1990; Teach & Schwartz, 2000;

Murff et al, 2006; Goosen, 2007 and others). The simplicity

of the white box models means that they are unlikely to be

mistyped. Whereas, the complex, non-linear nature of the

black box models is likely to lead to errors during program-

ming and testing.

CYCLOMATIC COMPLEXITY

McCabe (1976) identifies software that "will be difficult

to test" with a cyclomatic complexity metric that measures

complexity in terms of the number of possible paths

through the software. Hansen (1978) clarifies this in terms

FIGURE 1

Simulation size growth during development

Page 87 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

of logical complexity (IF THEN statements, CASE state-

ments and WHILE/UNTIL statements.) In response to de-

cisions a business simulation will use different paths to

calculate impact. A review of 20 business simulations with

model sizes ranging from 271 statements (with 36 paths) to

2127 statements (with 434 paths) suggested a linear rela-

tionship between the number of statements and the number

of paths (Figure 2: Cyclomatic Complexity relative to

Model Size) and this linear relationship and correlation

duplicates that found by Shepperd (1988). Cyclomatic

complexity is relevant as complex paths are difficult to

visualize and, ideally, every path needs to be tested

(McConnell, 2004). The need to test paths impacts testing

time and where the time available for testing is limited this

precludes testing all paths increasing the chance of soft-

ware defects.

The empirical study of the impact of cyclomatic com-

plexity by Gill & Kemerer (1990) investigated a range of

projects with cyclomatic complexity ranging from about

0.107 to about 0.197 and where the maintenance productiv-

ity of low complexity projects was four to eight times high-

er than complex projects. As illustrated in Figure 2, the

cyclomatic complexity of 0.192 is at the top of Gill & Ke-

merer's study meaning that maintenance (and testing) effort

will be significant.

STRUCTURAL COMPLEXITY

A business simulation models several processes that

interact and overlap. Typically a business simulation will

model marketing (how the marketing mix drives sales),

operations (the ability to provide for sales based on capaci-

ty and resources), a sales model (linking marketing and

operations), an Income Statement model (calculating reve-

nues and costs), a Balance Sheet model (calculating asset,

equity and liability changes) and a Cash Flow Model

(linking the Income Statement and Balance Sheet). The

simulation must model these processes in a appropriate

order. For example, although the marketing model out-

comes can be determined before or after the operations

model outcome, the sales model must be placed after both

the marketing and operations model. But besides the order

of processing, models overlap. For instance, for the finan-

cial models (Income Statement, Balance Sheet and Cash

Flow) some of the calculations are embedded in the earlier

models. The Income Statement model needs to be split with

revenue and costs calculated and used to determine bank

funding needs before Financial Expenses can be deter-

mined. A further structural complexity is that often the sim-

ulation involves several markets and/or products that are

processed in parallel. This means that the structure is com-

plex and design and testing are difficult.

DYNAMIC COMPLEXITY

Typically a business simulation involves making deci-

sions and receiving results on a period-by-period basis.

This is a dynamic feedback process where the current peri-

od's outcomes (results) depend on the current period's deci-

sions and the prior periods decisions and results (Hall &

Cox, 1993). This dynamic process is at two levels - the

dynamic behaviour of the business (the simulation model)

(Gold, 2003) and the dynamic behaviour of the decision-

making process. Both the dynamics of "real-world" busi-

ness (Forrester, 1958) and the simulated world (as explored

by the Beer Game (Goodwin & Franklin Sr., 1994)) can

lead to instability leading to the "bullwhip" effect (Lee et

al, 1997).

The dynamics complexity of a business simulation can

range from simple where few interactions between varia-

bles and over time to the situation to where there are "strong

feedback loops and may be non-linear in nature. [And]

There may be delays and inertia in the production, sales

and distribution of products" (Gold, 2003). This is exacer-

bated by noise (random events) and sudden changes breaks

in economic patterns (Hall & Cox, 1993). At the extreme,

FIGURE 2

Cyclomatic Complexity relative to Model Size

Page 88 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

dynamic complexity can lead to the situation where the

learners lose control of their business - resulting in the ina-

bility to identify and manage cause and effect and becom-

ing disaffected.

TYPES OF ERROR

The first step in assuring quality is an understand-

ing of error types so as to design them out. Software errors

fall into several classes (IEEE, 1990):

1. SYNTAX ERRORS

2. RUN-TIME EXCEPTIONS

3. LOGIC ERRORS

SYNTAX ERRORS

These are the errors associated with grammatical or

structural rules of the language used to program the model

(IEEE, 1990). They are generally not a concern as the com-

piler, interpreter or development platform will usually flag

them as the model is created or when the software is com-

piled.

RUN-TIME EXCEPTIONS

These are the errors that become apparent when the

simulator is used and halt the program (IEEE, 1990). Run-

time exceptions include divide by zero and (depending on

the modelling language) overflow, assignment to the wrong

type of variable, infinite loops, buffer overflows, etc.. If run

-time errors are not anticipated, detected and eliminated

during design they are disastrous for when the simulation is

used the simulator will crash and learning session will be

disrupted or terminated. Even if recovery is possible, the

learners are likely to become disaffected and lose trust in

the simulation. Run-time errors are likely to be caused by

extreme decisions or unexpected combinations of deci-

sions. For example, learners decide to withdraw from a

market resulting in zero sales for the market and its gross

profit percentage calculation resulting in a divide by zero

exception. Another example is where a simulator searches

for contracts that match a set of criteria. If the criteria are

too tight the search would continue for ever (infinite loop).

A final example involves developing new products and

adding them to the product range. As there will be a pre-

defined maximum number of data fields for the products,

buffer overflow will occur if the number of products ex-

ceed this.

LOGIC ERRORS

These are the errors associated with incorrect and

missing arithmetic calculations, conditional logic errors and

processing sequence errors. Errors that produce the wrong

results but do not terminate the program and as they lead to

the model behaving wrongly they are more insidious than

Run-Time Exceptions. Biggs & Halpin (2004) give an ex-

ample of an arithmetic calculation error was a simulation

had an upwardly sloping demand curve resulting in sales

increasing as price increased. In the same paper Biggs &

Halpin describe a logic (path) error where there were three

production constraints. Here testing covered paired com-

parisons but did not test for the situation where all three

constraints were breached and this allowed excessive pro-

duction when all three constraints were breached. An ex-

ample of missing logic in the same paper was because there

was no check on the number of sales people who could be

fire, it was possible to fire more sales people than were

employed. Consequentially, the simulation allowed nega-

tive sales staff and negative costs.

QUALITY ASSURANCE TESTING

Understanding sources of errors (error types) helps

reduce their occurrence but ultimately the software needs to

be tested and there are several types of testing:

BLACK BOX TESTING

WHITE BOX TESTING

CODE INSPECTION

STRUCTURAL SOUNDNESS TESTING

DYNAMIC STABILITY TESTING

Code Inspection, Black Box and White Box Testing

are standard for all software. But the special nature of busi-

ness simulations suggests that there are two further needs -

Structural Soundness Testing and Dynamic Stability Test-

ing.

 BLACK BOX TESTING

Black Box (functional) testing is "testing that ignores

FIGURE 3

Language Examples

=IF(B33>B84,B84,B33)

Figure 3a: Spreadsheet calculation

If Sales > Inventory Then 'insufficient inventory to serve demand

 Sales = Inventory 'amount sold limited to available inventory

End If

Figure 3b: BASIC language calculation

Page 89 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

the internal mechanisms of a system or component and

focuses solely on the outputs generated in response to se-

lected inputs" (Gao et al, 2003). For business simulations it

involves checking that the decisions produce the correct

results. A particular problem with black box testing is the

difficulty determining the cause or causes of an error

(which logic or arithmetic statements are the cause). For

instance, if the Balance Sheet does not balance, this can be

due to cash flow or costing errors or both or incorrect open-

ing Balance Sheet data.

WHITE BOX TESTING

White Box (structural) testing "takes into account the

internal mechanism of a system or component" (IEEE,

1990). In other words it involves tracing paths and how

variables change as one steps through the model. The prob-

lem with white-box testing is that with some modelling

languages it may be difficult or not possible to step through

the model and explore how variables change.

CODE INSPECTION

Code Inspection involves visually inspecting the mod-

el's source code statement-by-statement (Myers et al,

2004). As discussed later, the modelling language has a

major impact on the ease, speed and quality of code inspec-

tion.

STRUCTURAL SOUNDNESS TESTING

Structural soundness for business simulations means

ensuring that data is correctly transferred between periods,

parameters are initialised correctly, calculations are done,

in the right sequence and are not done in multiple (and dif-

ferent ways). Although this should be covered by black

and white box testing and code inspection, the structural

complexity of the model and the problems associated with

this means that it is advisable to check structural soundness

separately.

DYNAMIC STABILITY TESTING

Dynamic testing involves exploring the simulation's

dynamic stability. Ensuring dynamic stability is difficult to

test because, often, it depends on participant perceptions

and whether they "overreact". Dynamic testing takes place

at two points - during simulation design and during piloting

(alpha and beta testing). During design, stability testing

involves testing to see how extreme decisions impact re-

sults and exploring the delays between decisions and out-

comes. For instance, a major issue for a distribution compa-

ny selling to other companies is to have sufficient inventory

to service demand. If there are inventory shortages, not

only does the company loose sales but, over time, will gain

a reputation for poor customer service - a reputation that

will reduce future sales. But as inventory value impacts

profitability there is a desire to cut inventories. During, the

alpha testing of a distribution industry simulation, it was

found that it was too easy for participants to get a bad cus-

tomer service reputation that was impossible to recover

from. An example of the impact of delayed outcomes is

where price cuts take time to be apprehended by customers

and, to stimulate demand, participants may cut prices fur-

ther.

TOTAL QUALITY MANAGEMENT

Testing cannot be exhaustive (Myers et al, 2004) and

for business simulations this is particularly true because the

model size and complexities mean that the time needed to

test comprehensively is unacceptably long and costly. En-

suring quality must be an integrated, systematic strategy

(Evans & Dean, 2002) - Total Quality Management

(TQM). For business simulations TQM involves building

quality into the design process and entails:

FIGURE 4

Refactored Calculations (in italics)

'actual sales model

If SalesDemand > AvailableInventory Then 'insufficient inventory to serve demand

 ActualSales = AvailableInventory 'sales equal inventory

Else 'sufficient inventory to serve demand

 ActualSales = SalesDemand 'sales equal demand

End If

ClosingInventory = AvailableInventory - ActualSales inventory remaining

'analysis of poor forecasting model

LostSales = SalesDemand - Available Inventory 'amount of business turned away

LostProfit = LostSales * Margin 'profit lost because demand was not serviced

AverageInventory = (OpeningInventory + ClosingInventory)/2 'average during period

InventoryHoldingCost = AverageInventory * CarryingCost economic cost of inventory

Page 90 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

DESIGN METHODOLOGY

MODELLING LANGUAGE

SOFTWARE STRUCTURE

REFACTORING THE MODELS

DEFENSIVE PROGRAMMING

DOCUMENTATION

VERIFICATION SUPPORT

There are economic considerations of business simula-

tion quality management. Good quality management during

design serves to speed design and reduce the need for test-

ing and through this help reduce development costs. Fur-

ther, good design quality management, by providing good

user documentation and reports that explain calculations

and the impact of decisions, supports the business simula-

tion's use in the classroom and so its cost is further mitigat-

ed by usage benefits.

DESIGN METHODOLOGY

Business Simulation design methodology can draw on

instructional design methodologies (such as ADDIE

(Molenda, 2003) or the Dick & Carey Model (Dick et al,

2008)) and computer software design methodologies

(heavyweight (E.G. Waterfall) or lightweight (E.G. Agile)).

Hall (2005) described a special business simulation design

methodology (the Rock Pool method) that combined a

heavyweight, rigorous process with lightweight agility to

attempt to ensure that the new simulation is delivered to

time and to cost without constraining creativity. In this

methodology, the software design stage consists of two

linked rock pools - design and development. The design

stage involved creating models, deciding decisions and

results, developing preliminary documentation and creating

validation and quality assurance support. The development

stage comprised testing and calibrating models, ramping

workload, creating learning and tutoring support and refin-

ing documentation. The incremental design process (as

described earlier and illustrated in Figure 1) involves the

design of models, decisions and results and as appropriate

testing and calibrating as the simulation is created - a pro-

cess that increases model size (number of statements),

number of variables, reports and help pages as the design

progresses.

MODELLING LANGUAGE

The choice of modelling language impacts readability

and testability (Figure 3 shows spreadsheet based and

BASIC based models) models.

As revealed in Figure 3b, when sales demand exceeds

inventory the actual sales will be the same as inventory

(and sales will be lost). When there is sufficient inventory,

actual sales will be the same as demand. Besides self docu-

menting the variables, the BASIC example indents the cal-

culations to reveal structure and uses comments (the text

following the single quote) to explain the calculation fur-

ther. In contrast, the Spreadsheet calculation (Figure 3a)

does not identify explicitly the variables or explain what

the calculation does. And, as shown by the cell numbers,

the calculation involves using data from earlier parts of the

spreadsheet. When the code is created this is unlikely to be

a problem (unless the B33 and B84 cell references are

wrong). Readability is crucial when it comes to Code In-

spection and it is reasonable to suggest that the BASIC

language model is much easier to inspect than the spread-

sheet model. The importance of software readability is em-

phasised by McConnell (2004) who dedicates a whole

chapter to the subject.

White Box testing requires stepping through the model

and accessing variables during this process. A high level

language and integrated development environment like

Visual Basic allows one to do this statement by statement,

running to pre-defined points in the model or stop (break)

when selected variables change or are used. For example,

the Visual Basic Integrated Development Environment it is

possible to stop and inspect the code and values whenever a

variable such as Inventory changes. But some languages do

not allow one to step through the model exploring calcula-

tions.

SOFTWARE STRUCTURE

Kernighan & Plauger (1978) when discussing program

structure point out that "most programs are too big to be

comprehended as a single chunk" and this applies equally to

simulation models. Just as software consists of a series of

modules (subroutines, function and objects), simulations

consist of a series of sub-models (such as price response

models, inventory models, income statement models etc.).

Kleijnen (1995) when discussing the verification of simula-

tion models posits that a modular structure is good pro-

gramming practice. Kernighan & Plauger suggest that a

modular stucture aids comprehension and this is important

because of complexity - especially where is allows the cy-

clomatic complexity of each sub-model to be at a managea-

ble level (McCabe, 1976; McConnell, 2004). Beyond that,

FIGURE 5

Online Help example

Actual Sales

Actual sales is the number of units actually sold to customers. If there is sufficient inventory then actual sales

will be the same as sales demand. But where there is too little inventory, then actual sales will be limited to the

amount inventory.

Page 91 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

it facilitates adding sub-models, the associated data and

reports incrementally during design and as this is done test-

ed and documented. A further benefit of a modular, sub-

model approach is that it allows the designer to build up a

library of pre-verified and pre-validated sub-models

(objects) that can be used when designing new simulations

(Hall, 1996).

Another structural aspect is the extent to which the

model (code), data, decision entry and result display are

separate. Tjia (2009) advocates as best practice separating

the model, input (decisions) and output (results) but does

not extend this to include data as separate entities

(databases).

REFACTORING THE MODELS

Simulation design involves a process of continuous

addition and modification that may introduce errors and

reduce readability (Khan et al, 2011; Mohammad et al,

2013). Later as the design evolves and the software is

changed, added to and tested there may be problems. To

guard against these problems the software must be refac-

tored (revisited and modified) (Fowler, 1999) to ensure it

functions correctly and is readable. Figure 4 shows how the

calculations from Figure 3b have been refactored and add-

ed to. The variable Inventory has been changed to Availa-

bleInventory, Sales has been replaced by two variables

(SalesDemand and ActualSales) and additional calculations

included to clarify the model. The cost of poor forecasting

could have been included in the actual sales model, but

structurally it was felt that it would be better to create a

separate model as part of the business analysis models. But

refactoring is not without risk (Spolsky, 2004) because of

the way one model interacts with other models. As refac-

toring involves modifying the software this is a major

source of errors (Baisli & Perricone, 1984). For example, in

the earlier production model Inventory must be changed to

AvailableInventory, in the earlier marketing model Sales

must be changed to SalesDemand and in the later Income

Statement model when calculating Revenue, Sales must be

changed to ActualSales.

DEFENSIVE PROGRAMMING

Defensive programming is intended to ensure the con-

tinuing function of a piece of software in spite of unfore-

seeable usage of the software. The nature of business simu-

lations means that participants have virtually unlimited

authority to make decisions and this causes the software to

be stressed to extremes - necessitating defensive program-

ming. There are several areas of risk - decision entry, algo-

rithms that are likely to cause exceptions and dynamic in-

stability. It is standard data processing practice to parse

input and for business simulations this should extend to

decision screening (Hall, 1994) where illegal decisions are

identified and rejected and unusual decisions questioned.

Run-time exceptions (such as division by zero) cause the

program to terminate need to be identified and redesigned

to prevent failure. Eliminating or minimising the risk of

dynamic instability is achieved by constraining feedback

loops and delays.

DOCUMENTATION

A key part of software development is documentation

(Riggs, 1988)) and, in particular, source code documenta-

tion, online help and external documentation. There are two

issues with documentation. First, commonly, programmers

do not like to document (Spolsky, 2004) and, secondly,

documentation of agile software development is often poor

(Mohammad et al, 2013).

Source Code documentation reveals and describes

the calculations. Kotula (2000) suggests that source code

documentation is critical to software development and an

irreplaceable necessity. Kernighan & Plauger (1978) de-

vote a full chapter to source code documentation.

McConnell (2004) suggest the variable names should be

descriptive, reasonably brief and describes the variable

unambiguously. As, illustrated in Figures 3b and 4, variable

names commonly consist of several words. These are made

more readable (Brinkley et al, 1990) by using "medial capi-

tals" (Camel Case or Pascal Case where the start of each

word is a capital) or using underscores between words

(Snake_Case). Indenting, comments and white space be-

FIGURE 6

External Documentation example

Figure 6a: Key Models Figure 6b: Processing Sequence

Project Ambiguity Search for Project Opportunities

Pre-Contract Design Impact Pre-Qualify Project Opportunities

Client Meeting Prepare Tenders

Project Urgency Negotiate Contracts

Project Size & Spread Execute the Projects

Competitor Pricing

Project Execution

Cash Flow

Page 92 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

tween sub-models improve readability further.

Online help documents the variables and the reports

produced. Figure 5 shows an example of the help record

used to explain actual sales. In this example the underlined

terms are hyper-text links to other help record explaining

the terms.

During design, help records facilitate refactoring and

when variables are used in other parts of the model. Be-

sides helping during design, online help supports the learn-

ers and tutor during use and is a vital aid if redesign is nec-

essary. As illustrated in Figure 1, ideally help records are

created as the simulation is created.

External Documentation is the paper based documen-

tation of the simulation models, processing sequence, the

decisions and results. In contrast to the source code and on-

line documentation that is at a detail level, external docu-

mentation is at a high level and descriptive rather that de-

tailing individual algorithms. Figure 6 shows extracts from

the external documentation for a stage-gate simulation for

middle management of a large engineering design compa-

ny. This (the Prospector simulation) involves participants

searching for project opportunities that matched their capa-

bilities and business objectives, narrow down their choice,

tender and negotiate contracts and, finally, fulfil (execute)

the contracts

External documentation serves several purposes. It

captures the design as the models are created to facilitate

refactoring and integration between models. It can be used

as part of the trainers manual and used when the simulation

is updated or the models are used by later simulations. The

major processing sequence sub-models (Figure 6b) are like-

ly to be defined and documented at the start of the simula-

tion with sub-processes documented as they are added to

the design. The key models (Figure 6a) are documented as

the simulation design progresses and linked to the pro-

cessing sequence. This documentation helps ensure correct

processing structure and finding models when testing.

VERIFICATION SUPPORT

Methodology, structure and modelling language pro-

vide the basis for good quality but beyond this is the ques-

tion of how you support quality assurance during testing

(especially during Black Box testing). This can be accom-

plished by providing additional reports that provide checks

on intermediate simulation outputs (Kleijnen, 1995). These

explain (reconcile) accounting and operational calculations

(Figure 7a), analyse the business (Figure 7b) and validate

and help calibrate the black box models (Figures 8). Be-

sides providing data for the quality assurance reports, these

additional reports serve to document the model's logic.

In Figure 8, each column shows how individual deci-

sions (price, promotion and product) impact how the cus-

tomer responds to each. These are these aggregated

(Market Response) and together with Nominal Demand

determine Sales Demand. From this the financial impact is

calculated in terms of Sales Revenue, Cost of Sales, Pro-

motion Cost and Net Profit. Figure 8 as a whole shows how

different prices, promotion and product impact sales, reve-

nue and profit.

Hall (2012) while exploring the design of an actual

business simulation found that reports to support verifica-

tion increased the number of reports produced by the simu-

lation nearly three-fold. But, besides supporting verifica-

tion the extra reports support learning during simulation

use. In particular, reconciliations (Figure 7a) allow the

trainer to answer questions authoritatively and quickly

about how results were calculated. Business Analysis re-

ports (Figure 7b) allow the trainer to identify individual

team strengths and weaknesses and decide whether to and

how to coach and challenge. Black Box validation reports

(Figure 8) reveal how the simulation responds to decisions

and where teams are compared identifies relative team

strengths and weaknesses and facilitate choosing which

teams need coaching and challenge.

CONCLUSIONS

This paper has concentrated on the objective, process

aspects of quality assurance needs and ensuring model veri-

fication. But, just as business simulations have emotional-

engagement aspects there are the subjective aspects of the

simulation designer's personality traits and the emotional

issues associated with testing and quality management.

FIGURE 7

Reconciliation and Business Analysis Reports

Inventory/Sales Reconciliation Forecast Error Cost Analysis

Opening Inventory 100 Average Inventory 74.5

Actual Production 200 Carrying Cost .20

Available Inventory 300 Inventory Holding Cost 15

Sales Demand 251 Lost Sales 0

Closing Inventory 49 Profit Margin 30

Actual Sales 251 Lost Profit 0

Figure 7a Reconciliation Report Figure 7b: Business Analysis Report

Page 93 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

Amer (2005) differentiates between analytical and

creative thinking and it is arguable that the designing busi-

ness simulations requires creative thinking and testing and

managing quality require analytical thinking. It is possible

that these are conflicting personalities and the Myers-

Briggs personality inventory suggests that creative and

artistic personalities are ENFP and ISFP types - both with

the feeling (F) and perceiving (P) - personalities that are

different from those of computer software designers. Lyons

(1985) and Smith (1989) found that computer software

designers have a preponderance of thinking (T) and judging

(J) personalities. The Lyons and Smith researches found

81% and 89% respectively were thinking types and 65%

and 86% respectively were judging types. Further, Buie

(1988) found that ISFP (the Myers-Briggs type associated

with artists) was particularly underrepresented with no

computer programmers in his sample having this character-

istic. These personality differences may impact the assur-

ance of quality. In this context, it would be interesting to

research the Myers-Briggs types of simulation designers

and users to see if they have creative/artistic or computer

software design personalities.

Emotional issues play a part in both testing and quality

management. As mentioned, testing is likely to be very

time consuming and boring and lead to early termination of

the tests or a reduction in diligence and this may cause

problems for people with an artistic/creative personality. If

there is a problem, this might be mitigated by to delegating

testing to people with analytical (TJ) personalities

(computer programmers). But, arguably, simulation model

testing parallels proof reading literature where for literature

the proof reader becomes engaged in the story and for the

simulation the tester becomes engaged by the experience.

And, this engagement leads to flow (Csikszentmihaly,

2002) where "experience is so gratifying that people are

willing to do it for its own sake" and thwarts testing. Manag-

ing quality during design is even more problematical be-

cause, unlike testing, creative needs suggest a need for it to

be done by an FP type person. A person who may be un-

willing to step away from business simulation creation to

manage quality. Further, just as flow can occur during test-

ing, it can occur during design as the simulation designer

sees his or her creation take shape.

Arguably, the special nature of business simulations -

the model size, its complexity, who uses it and their emo-

tional engagement means that ensuring and verifying the

quality is, perhaps, more difficult than for computer soft-

ware in general. Quality assurance through testing is unsat-

isfactory because size and complexity mean that testing for

all conditions is unreasonably long and costly. Consequen-

tially, quality assurance is only ensured if quality is man-

aged throughout the design process and the designer is

knowledgeable about and uses good software practice tak-

ing into account the special nature of business simulations.

REFERENCES

All the ABSEL Proceedings papers can be found in the

FIGURE 8

Black Box Validation and Calibration

Marketing Decisions Impact

Price Decision 100 80 120 100 100 100 100 100

Promotion Decision 2500 2500 2500 2000 3000 2500 2500 2500

Product Decision 3 3 3 3 3 2 4 5

Price Response 1.00 1.49 0.72 1.00 1.00 1.00 1.00 1.00

Promotion Response 0.90 0.90 0.90 0.78 0.97 0.90 0.90 0.90

Product Response 0.93 0.93 0.93 0.93 0.93 0.72 1.00 0.91

Market Response 0.84 1.25 0.60 0.72 0.91 0.64 0.90 0.81

Nominal Demand 300 300 300 300 300 300 300 300

Sales Demand 251 374 180 217 272 193 269 244

Price 100 80 120 100 100 100 100 100

Potential Revenue 25200 29920 21600 21700 27200 19300 26900 24400

Cost of Sales 13860 20570 9908 11935 14960 9650 16140 15860

Promotion Cost 2500 2500 2500 2000 3000 2500 2500 2500

Potential Profit 8840 6850 9200 7765 9240 7150 8260 6040

Page 94 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

Bernie Keys Library that is published annually (see http://

absel2011.wordpress.com/about/bernie-keyes-library/)

Aldrich, Clark (2009) The Complete Guide to Simulations

and Serious Games Pfeiffer, San Francisco

Amer, Ayman (2005) Analytical Thinking Center for Ad-

vancement of Postgraduate Studies and Research in

Engineering - Cairo University (CAPSCU), Cairo

Baisli, Victor R. and Barry T. Perricone (1984) Software

Errors and Complexity: An Empirical Investigation,

Communications of the ACM Volume 27, Issue 1, New

York

Bellman, Richard, Charles Clark, Cliff Craft, Don O. Mal-

colm and Franc Ricciardi (1957) On the construction

of a multi-stage multi-person Business Game, The

RAND Corporation.

Biggs, William D. & Annette L. Halpin (2004) On the

Value of Bugs in Simulation Environments, Develop-

ments in Business Simulation and Experiential Learn-

ing, Volume 31

Bots, Pieter & Els van Daalen (2007) Functional Design of

games to support natural resource management policy

development Simulation & Gaming Dec 2007, Volume

38

Brinkley, Dave, Marcia Davis, Dawn Lawrie & Christo-

pher Morrell (2009) To CamelCase or Under_score,

Proceedings of the 2009 IEEE 17th International Con-

ference on Program Comprehension

Buie, E. A. (1988) Psychological type and job satisfaction

in scientific computer professionals, Journal of Psy-

chological Type, 15

Cook, Ian (2006) Beware the perils of spreadsheets, Finan-

cial Times http://www.ft.com/cms/s/2/53faff38-df5e-

11da-afe4-0000779e2340.html#axzz2bvPSRaCp

(retrieved 8/14/2013)

Csikszentmihaly, Mihaly (2002) Flow Random House,

London

Dick, Walter, Lou Carey & James O. Cary (2008) The Sys-

tematic Design of Instruction Pearson, New Jersey

Evans, J & J. W. Dean, jr (2002) Total Quality: manage-

ment, organisation and strategy South-Western, St

Paul

Forrester, Jay W. (1958) Industrial Dynamics - A Major

Breakthrough for Decision Makers.", in: Harvard

Business Review, Vol. 36, No. 4, pp. 37–66.

Freeman, D (1996), How to make spreadsheets error-proof,

Journal of Accountancy, 181 (5), 75

Fowler, Martin (1999) Refactoring: Improving the design

of existing code. Addison Wesley Longman, Boston

Mass.

Gao, Jerry, H._s. Tsao, Ye Wu (2003) Testing and Quality

Assurance for Component-based Software Artech

House, MA, USA

Gill, Geoffrey K, & Chris F. Kemerer (1990) Cyclomatic
Complexity Density and Software Maintenance

Productivity IEEE Transactions on Software Engineer-

ing Volume 17 Issue 12, December 1991

Gold, Steven (2003) The Design of a Business Simulation

using a System-Dynamics-Based Approach Develop-

ments in Business Simulation and Experiential Learn-

ing,, Volume 30

Gold, Steven C. & Thomas F. Pray (1990) Modelling De-

mand in Computerized Business Simulations, in Guide

to Business Gaming and Experiential Learning AB-

SEL

Goodwin, Jack S. & Stephen G. Franklin Sr. (1994) The

Beer Distribution Game: Using Simulations to Teach

Systems Thinking, Journal of Management Develop-

ment, 13.8

Goosen, Kenneth R (1981) A Generalised Algorithm for

Designing and Developing Business Simulation Devel-

opments in Business Simulation and Experiential

Learning, Volume 8

Goosen, Kenneth R (2007) An Analysis of the Interactions

of Firm Demand and Industry Demand in Business

Simulations Developments in Business Simulation and

Experiential Learning, Volume 34

Hall, Jeremy & Benita Cox, (1993) Computerised Manage-

ment Games: the feedback process and servo-

mechanism analogy in The Simulation & Gaming

Yearbook 1993 eds. Fred Percival, Sheila Lodge and

Danny Sunders, Kogan Page, London

Hall, Jeremy J. S. B. (1994) Computerised Tutor Support

Systems: the tutor's role, needs and tasks, in The Simu-

lation & Gaming Yearbook Volume 2 Kogan Page

London

Hall, Jeremy J. S. B. (1996) Computerized Simulation De-

sign: OOP or oops The Simulation & Gaming Year-

book Vol 4 Kogan Page, London

Hall, Jeremy J. S. B. (2005) Computer business simulation

design: the rock pool method Issues Developments in

Business Simulation and Experiential Learning, Vol-

ume 32

Hall, Jeremy J. S. B. (2007) Computer Business Simulation

Design: Novelty and Complexity Issues Developments

in Business Simulation and Experiential Learning,

Volume 34

Hall, Jeremy J. S. B. (2011) The Art, Science and Craft of

Computer Business Simulation Design, Hall Market-

ing, London

Hall, Jeremy J. S. B. (2012) Designing the Training Chal-

lenge Developments in Business Simulation and Expe-

riential Learning, Volume 39

Hansen, W.J. (1978) Measurement of Program Complexity

By the Pair (Cyclomatic Number, Operator Count, in

ACM SIGPLAN Notices 13 (3) March 1978

Howard, Philip (2005) Managing Spreadsheets, A White

Paper by Bloor Research, Towcester, UK.

IEEE (1990), IEE Standard 610.12-1990, IEEE Standard

Glossary of Software Engineering Terminology

Kernighan, Brian W. & P. J. Plauger (1978) The Elements

of Programming Style McGraw-Hill Book Company,

New York

http://absel2011.wordpress.com/about/bernie-keyes-library/
http://absel2011.wordpress.com/about/bernie-keyes-library/

Page 95 - Developments in Business Simulation and Experiential Learning, volume 41, 2014

Khan, Asif Irshad, Rizwan Jameel Qurashi & Usman Alli

Khan (2011) A Comprehensive Study of Commonly

Practiced Heavy and Light Weight Software Method-

ologies UCSI International Journal of Computer Sci-

ence, Volume 8, Issue 4, No 2

Kleijnen, Jack P.C (1995) Verification and validation of

simulation models European Journal of Operational

Research 82 Elsevier

Kotler, Peter (1991) Marketing Management Prentice Hall,

New Jersey

Kotula, Jeffrey (2000) Source Code Documentation: An

Engineering Deliverable" in Proceedings of the Tech-

nology of Object-Oriented Languages and Systems

Law, A.M. & W.D. Kelton (1991) Simulation Modeling

and Analysis 2nd ed., McGraw-Hill, New York

Lee, Hau L., V. Padmanabhan & Whang (1997) The Bull-

whip Effect in Supply Chains, Sloan Management Re-

view Spring 1997

Löwgren, Jonas (1995) Applying Design Methodology to

Software Development, ACM, New York

Lyons, M.L. (1985) The DP psyhe, Datamation 31 (16)

McCabe, Thomas J. (1976) A Complexity Measure. IEEE

Transactions on Software Engineering: 315

McConnell, Steve (2004) Code Complete, Microsoft Press,

Redmond

Mohammad, Adel,Tariq Alwada'n, Jafar "M.Ali" Ababneh

(2013) Agile Software Methodologies: Strength and

Weakness, International Journal of Engineering and

Technology (IJEST) Volume 5, No 03

Molenda, M (2003) In serch of the elusive ADDIE model

Performance Improvement 42(5)

Murff, Elizabeth J. Tipton, Richard D. Teach & Robert G.

Schwartz (2006) Three-Attribute Interrelationships for

Industry-Level Demand Equations Developments in

Business Simulation and Experiential Learning, Vol-

ume 33

Myers, Glenford J., Corey Sandler, Todd M. Thomas and

Tom Badgett (2004) The Art of Software Testing John

Wiley & Sons, Inc. New Jersey

Panko, R and Halverson, R. (1996) Spreadsheets on Trial:

A Survey of Research on Spreadsheet Risks Proceed-

ings of the Twenty-Ninth Hawaii International Confer-

ence on Systems Sciences, Maui, HA, January 1996

Panko, Raymond R. (2005) Spreadsheet Errors: What We

Know, What We Think We Can Do, Proceedings of

the Spreadsheet Risk Conference, Greenwich, England,

July 2000

QSM - Function Point Languages Table Version 5.0 2013 -

http://www.qsm.com/resources/function-point-

languages-table (retrieved 19/7/2013)

Rajalingham, K, Chadwick, D. and Knight, B. (2000)

Classification of Spreadsheet Errors, British Computer

Society (BCS) Computer Audit Specialist Group

(CASG) Journal, Vol 10, No 4 (Autumn 2000)

Riggs, Robert (1988) Computer Systems Maintenance.

Techniques of Program and System Maintenance.

QED Information Sciences,

Shepperd, M. (1988) A critique of cyclomatic complexity

as a software metric, Software Engineering Journal 3

(2) (March 1988)

Smith, D. C. (1989) The personality of the systems analyst:

and investigation, ACM Computer Personnel 12 (2)

Spolsky, Joel (2004) Joel on Software Apress, Berkeley,

CA

Teach, Richard D. & Robert G. Schwartz (2000) Introduc-

ing Cross-Elasticities in Demand Algorithms Develop-

ments in Business Simulation and Experiential Learn-

ing, Volume 27

Thavikulwat, Precha (2004) The architecture of computer-

ized business gaming simulations Simulation & Gam-

ing Volume 38 Number 2 June 2007 SAGE Publica-

tions

Tjia, John S. (2009) Building Financial Models McGraw

Hill, New York

THE SIMULATIONS

This list of simulations are the ones used for the

cyclomatic complexity analysis and referenced in the pa-

per. They show the original design date. However all have

been updated since then.

Hall, Jeremy J. S. B., Business Focus, Hall Marketing,

2000

Hall, Jeremy J. S. B., Distrain, Hall Marketing, 2004

Hall, Jeremy J. S. B., Executive Challenge, Hall Marketing,

1996

Hall, Jeremy J. S. B., Foundation Challenge, Hall Market-

ing, 2002

Hall, Jeremy J. S. B., Global Operations, Hall Marketing,

1981

Hall, Jeremy J. S. B., Management Challenge, Hall Market-

ing, 1986

Hall, Jeremy J. S. B., Management Experience, Hall Mar-

keting, 1976

Hall, Jeremy J. S. B., Operations, Hall Marketing, 1981

Hall, Jeremy J. S. B., Product Launch, Hall Marketing,

1978

Hall, Jeremy J. S. B., Professionals Challenge, Hall Mar-

keting, 2013

Hall, Jeremy J. S. B., Prospector, Hall Marketing, 2005

Hall, Jeremy J. S. B., Retail Challenge, Hall Marketing.

1987

Hall, Jeremy J. S. B., Sales Calls, Hall Marketing, 1983

Hall, Jeremy J. S. B., Sales Mix, Hall Marketing, 1983

Hall, Jeremy J. S. B., Service Challenge, Hall Marketing,

1989

Hall, Jeremy J. S. B., Service Launch, Hall Marketing,

2008

Hall, Jeremy J. S. B., SMART, Hall Marketing, 1987

Hall, Jeremy J. S. B., SMITE, Hall Marketing, 1984

Hall, Jeremy J. S. B., Teamskill, Hall Marketing, 1971

Hall, Jeremy J. S. B., Training Challenge, Hall Marketing,

2011

http://www.qsm.com/resources/function-point-languages-table
http://www.qsm.com/resources/function-point-languages-table

