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ABSTRACT 
 

The paper develops an algorithm to model short-run cost and production 
functions using Sheppard’s lemma in computerized business simulations. 
The algorithm is derived utilizing duality theory to maintain consistency 
between the production technology and cost relationships of the firm. The 
short-run cost function is shown to depend on: variable factor prices, the 
production rate, and the level of the fixed factors. Sheppard’s Lemma is 
applied to derive the cost minimizing input demand levels based on the 
characteristics of the short-run cost function. A recommended system of 
equations is presented and discussed to simulate the theoretical model of the 
firm. A numerical example is given to illustrate how the parameters of the 
equation set can be estimated and how the functions behave. The system is 
shown to be flexible and may be applied to model a wide array of cost 
structures. 
 

THE PROBLEM AND PURPOSE 
 
In a seminal paper, Kenneth Goosen (1981) encouraged simulation 
designers to be more open about the way in which they have modeled their 
simulations. He noted that prior to 1981 only sixteen professional papers 
dealt with design concerns in creating simulations. Identifying the 
algorithms embodied in simulations would be helpful not only to 
individuals interested in developing simulations but also to users of 
simulations. 
 
Users of simulations are sometimes puzzled about the results of a team’s 
play. Numerous questions are raised about simulation performance, such as: 
“Why did my profits fall? What caused my costs of goods sold to rise so 
quickly? or Why was there such a substantial decline in my stock market 
value?” Although some design issues have been addressed in recent years 
they have pertained primarily to the demand side (see Decker, LaBarre, & 
Adler(1987); Frazer(1983); Gold & Pray(1983, 84), Golden(1987), 
Goosen(1986); Lambert & Lambert(1988); Teach(1989, 1990); and 
Thavikulwat(1988)). A paper by Thavikulwat(1989) was one of the first 
attempts at carefully modeling the supply side of the firm; and he stated: 
 
“The problem of modeling supply.. .has tended to be neglected. Yet, the 
supply side of modeling presents issues that are at least as involved as those 
of the demand side.” (p.37) 
 
In this paper the design and relationship of production and cost structures in 
computerized business simulations will be addressed. According to a study 
by Whitney, et. al. (1990) the management of technology is becoming a 
focus of attention in many business schools. This raises an interesting 
question as to how technology is modeled in business and management 
simulations. A review of a number of contemporary business simulations by 
Gold and Pray (1989) identified a problem in the design of the production 
technologies in a wide array of business simulations. Almost all the 
simulations reviewed displayed a linear relationship between production 
and costs in both the short-run and long-run, implying constant returns to 
the variable inputs and no economies-of-scale in the cost structure. This is 
in sharp contrast to numerous economic studies which have shown that 
economies of scale are widespread in industry (see Walters (1963)). 
 
Gold and Pray (1989) also noted that there were inconsistencies between the 
modeling of production and the implied cost structure of the simulated 
firms. Some designers modeled economies of scale by changing input prices 
while keeping productivity constant. While this approach may seem 
adequate it allows productivity to be constant and, simultaneously, average 
costs to decline. Although this result is possible, it is not the general case. 
Duality theory argues that economies of scale are derived, more generally, 
from increasing returns in the production process given fixed factor prices. 
 
In an attempt to address this concern Gold(1990) 

 developed a system to model the cost structure of the firm in a manner 
consistent with duality theory. However, the cost structure developed by 
Gold was a long-run analysis and assumed all factors of production were 
variable. Since all firms operate with fixed constraints in the short-run it is 
important to assess the impact of plant size and capacity constraints on the 
costs of the firm. The purpose of this paper is to address this concern and 
incorporate the short-run with fixed factors of production in the modeling of 
cost and functions. 
 
METHODOLOGY 
 
The approach taken in this paper allows the designer to specify the cost 
relationships of the f inn first and then derive, jointly, the levels of input 
usage and the production function implied by the cost structure. The 
advantages of this approach are twofold. First, it guarantees that the 
behavior of the production function will be consistent with the cost structure 
of the firm. Second, it utilizes cost information rather than production data 
to model the firm. Cost information is more accessible in published sources 
than production data. Since the methodology in this paper uses cost 
information to develop the cost function, first, and then derives the implied 
production technology, it is easier to simulate and does not require 
production data. 
 
More specifically the methodology involves: 
 
(1) Deriving a generalized short-run cost function based on the theoretical 
properties of duality theory and Sheppard’s Lemma. The short-run is 
carefully distinguished from the long-run cost characteristics of the firm. 
 
(2) Developing a recommended system of equations for modeling short-run 
cost and production functions. The recommended system of equations 
maintains the dual relationship between the production and cost 
characteristics of the firm. 
 
(3) Specifying a procedure to estimate the parameters of the equation 
system based on the apriori specifications of the designer. A numerical 
example is given to illustrate the procedure and show the characteristics of 
the functional form. 
 
(4) Simulating the equation set and deriving the implied production 
technology given the estimated parameters of the system. The numerical 
example is used to illustrate how the system behaves. 
 
 

DERIVING THE GENERALIZED SHORT-RUN COST FUNCTION 
 
The cost function depends on the production technology of the firm. 
Assuming one fixed input, capital equipment, and two variable inputs, labor 
and materials, we can express the general production function as: 
 
 Q = f(K, L, M)  (1) 
 where Q = quantity produced (units) 
  K = capital equipment (units) 
  L = labor (hours) 
  M = material (pounds) 
 
subject to the short-run constraint that capital is fixed: 
 
 K = K = fixed  (2) 
 
In the short-run the total costs of the f in may be divided into fixed and 
variable costs. 
 
 TC TFC +TVC  (3) 
 TFC = (Pk)K  (4) 
 TVC = (Pl)L + (Pm)M  (5) 
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where: TC total costs ($/period) 
TFC = total fixed costs ($/period) 
TVC = total variable costs ($/period) 
Pk = price of capital ($/unit) 
P1 = price of labor ($/hour) 
p3 = price of mat’1 ($/lb.) 

 
Dividing both sides of the cost equations (3, 4, 5) by the quantity produced 
Q, we get: 

ATC =  AFC + AVC (6) 
AFC =  Pk/Apk   (7) 
AVC =  P1/Api + Pm/AP (8) 
where: ATC = average total costs 

  AFC = average fixed costs 
  AVC = average variable costs 
  APk = average product of capital = Q/K 
  APl = product of labor = Q/L 
  AP = average product of mat’l = Q/M 
 
These equations (6-8) illustrate the dual relationship between production 
and cost in the short-run. Average total cost (ATC) is the sun of average 
fixed cost (AFC) plus average variable costs (AVC). Average fixed costs 
and average variable costs are inversely related to the average products of 
the respective inputs. As the average product of capital (APk) rises, the 
AFC will decline. As the average product of labor (APi) or material (AP.) 
increase the AVC will decrease. 
 
The short-run marginal cost equation may be derived by taking the 
derivative of TVC with respect to Q since the marginal product of the fixed 
factor, K, is zero: 

MC = P1/MP1 + P/MPm (9) 
where: MC = marginal cost of production 
 MP1 = marginal product of labor  = dQ/dL 
 MPm = marginal product of material = dQ/dM 

 
Equation 9 shows short run marginal costs (MC) are inversely related to the 
marginal products of the variable inputs. The marginal product of the fixed 
input is zero in the short-run and is not included. As the marginal product of 
labor or materials increase, the MC will decline. 
 
Applying the approach presented by Sheppard (1970) it may be shown that 
costs can be expressed as a function of the level of input prices and 
production. The first step is to formulate the lagrangian equation for 
minimizing total variable costs, equation 5, subject to a given level output, 
the production function, equation 1, and the fixed input constraint, equation 
2: 
Z = (P1)L + (Pm)M + q(Q - f(L,M,K) .+ k(K - K ))* (10) 
 

where: q = lagrangian multiplier of constraint Q  
 k = lagrangian multiplier of constraint K 

 
The cost minimizing input usage may then be obtained by setting the partial 
derivatives of the lagrangian equation (Z) with respect to the inputs equal to 
zero, giving us the following first order conditions: 

dz/dL = P1 - g (dQ/dL = 0 (11) 
dz/dM = Pm - g dQ/dM  = 0 (12) 
dz/dq = Q - f(L,M,K) = 0 (13) 
dz/dk = K -K*  = 0 (14) 

 
Solving the equation set simultaneously, and substituting into equation 1, 
the generalized cost function may be written as: 

TVC = f(P1, Pm, Q, K) (15) 
 
Equation 15 shows that total variable costs may be expressed as a function 
of input prices, production, and the level of capital, without directly 
specifying the level of input use. 
 
The level of input use my be derived by applying Sheppard’s Lemma. 
Sheppard (1970) proved that the demand for the variable inputs may be 
obtained by differentiating the cost function with respect to the variable 
input prices. Given the generalized cost function, equation 15, and applying 
Sheppard’s Lemma we get: 

L = d(TVC)/dPl (16) 
M = d(TVC)/dpm (17) 

 
Equation 16 specifies that the quantity of labor used  

by the firm may be determined through the cost function by taking the 
derivative of total variable costs with respect to the price of labor. Similarly, 
equation 17 specifies the quantity of material used by the firm is the 
derivative of total variable costs with respect to the price of materials. 
 
Sheppard’s Lemma is a powerful theoretical tool for the design of cost and 
production functions. Once the cost function is specified, the demand for 
inputs (labor and materials) may be ascertained in a manner consistent with 
duality theory. In this case, increases in average variable costs or marginal 
costs would imply decreases in average products or marginal products of 
the variable inputs (as described by equations 8 & 9). 
 
The output elasticity or returns to the variable input (E) is measured by the 
ratio of short-run AVC to MC, such that: 
 

E = AVC/14C (18) 
 
If E > 1 then increasing returns to the variable input exists. Increasing 
returns implies AVC exceeds MC. If E < 1 then decreasing returns exist, 
indicating MC exceeds AVC. If E = 1 then there are constant output 
elasticities, AVC = MC, and AVC is minimized. Generally, it is expected 
that at low levels of output the firm would be able to achieve increasing 
returns, and after some point of diminishing returns would only be able to 
obtain decreasing returns to the variable input. 
 

A SHORT-RUN COST SYSTEM 
For clarity of exposition, two variable inputs and one fixed input will be 
used to illustrate the function, but the model may be easily generalized to 
any number of arguments. The short-run cost function is multiplicative in 
nature and is flexible enough to model increasing and decreasing returns to 
the variable input, given a fixed level of capital: 
 

Multiplicative Cost Function 
 a2 a3 (a4 + a5Q - a6K) a7 
TVC =al(P1)   (Pm)   Q K (19) 
 
TC = TVC + (Pk)K (20) 
 
where: TVC = total variable cost 

TC = total costs (variable + fixed costs) 
Ai = parameters; i = 1 to 7 
P1  = price of labor input 
Pm = price of mat’1 input 
Q = quantity produced 
K = capital equipment 

 
An important characteristic of equation 19 is that total variable costs, TVC, 
depend on the level of the fixed factor, K. Although this adds to the 
complexity of the function, it makes the function more realistic and follows 
from the assumption of non-separability between variable and fixed factors 
of production. As explained by Bernt and Christensen (1973) non-
separability exists within a function when the marginal rate of substitution 
between any two variable factors (L and M) is dependent on the fixed 
factor(s), K. This assumption is required to embody economies or 
diseconomies of scale in the cost structure. Economies of scale implies that 
AVC will decline in the long-run with increase in capital, K. A study by 
Walters (1963) concluded that economies of scale is characteristic of 
virtually all manufacturing operations. 
 
The multiplicative functional form of the cost equation makes the 
parameters relatively easy to interpret, and is a stable and flexible function 
for simulation purposes. The parameter al is simply a scaling factor to 
obtain the desired level of cost. Parameters a2 and C are the input price 
elasticities and show the proportion of input costs to total variable costs. 
The exponent term (a4 + a5Q - a6K) associated with Q, allows for variable 
cost elasticities with respect to both output, Q, and capital, K. Variable cost 
elasticity is necessary to model increasing and decreasing returns to the 
variable inputs. The cost elasticity increases as the level of output increases 
or the level of capital decreases. Finally, parameter a7 impacts the capital 
elasticity, which determines, in part, the sensitivity of TVC to changes in 
the level of the fixed factor. 
 
The output elasticity (E) may be derived from equation 18 since 
E = AVC/MC = (TVC/Q)/(TVC/dQ). 
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Economies of Scale 
 
E = l/(a4 + a5 Q(l.0 +-lnQ) -a6K) (21) 

where: E = economies of scale lnQ natural log of Q 
  lnQ = natural log of Q 

 
The resulting input demand equations derived from the cost function, using 
Sheppard’s Lemma for the variable factors are: 
 

Input Demand Equations 
 

L = a2 (TVC)/Pl (22) 
M = a3 (TVC)/P (23) 
K = K* (24) 

 
Capital, K, is assumed to be fixed in the short-run. A well behaved cost 
function also requires the following restriction: 
 

Homogeneity Restriction 
 
a2 + a3 = 1.0 (25) 
 

This restriction guarantees that the total variable cost function is 
homogenous of degree one. This simply means that if all variable input 
prices increase by some proportion, say 10%, then total variable costs will 
increase 10%, given a constant production level. This relationship holds by 
definition, refer to equation 5. 
 

NUMERICAL EXAMPLE: ESTIMATING THE 
PARAMETERS OF THE SYSTEM 

 
One of the advantages of the multiplicative functional form, is the ease in 
which parameters of the system can be estimated given the design 
characteristics of the simulated cost function. To illustrate how the 
parameters may be estimated, a numerical example will be given. 
 
Suppose a simulation designer wants to model a cost function that possesses 
increasing returns to the variable inputs of 1.5 at an initial output level of 
1000 units, and constant returns of 1.0 (the point of minimum AVC) at 1500 
units of output, given a fixed level of capital at 2000 units. If the level of 
capital is increased to 2200 units, the point of constant returns or minimum 
AVC would be extended to 1600 units of output. Of course, any scenario 
consistent with standard cost behavior could be designed. This example 
implies the following data specifications: 
 

Output  
Elasticity  Qutput(O) Capital (K) 

 
 E = 1.5 1000 units 2000 units 
 E  1.0 1500 units 2000 units 
 E   1.0 1600 units 2200 units 
 
According to the homogeneity restriction, the sum of the proportion of 
variable costs that are attributed to labor (a2) and the proportion of variable 
costs attributed to materials (a3) must sum to 1.0. Further suppose the 
capital elasticity parameter, a7, is specified to be 0.5. To summarize: 
 
Variable  Fixed 
Inputs Parameter Inputs  Parameter 

L a2 = 0.80  K a7 = 0.50 
M a3 = 0.20 

Sum 1.00 
 
Finally, the designer needs to specify the total variable costs corresponding 
to the initial output level of 1000 units; and the input prices: 

TVC = $28,490 
P1 = $25 
Pm = $10 
Pk = $ 1 

 
Given the above data, the first step is to solve for the parameters a4, a5, and 
a6 by using equation 21 and substituting in the values for E and Q above. 
 
 1.5 =1.0 /(a4+a5(1000) (1.0 .s-ln1000) - a6(2000) ); 
 1.0 =1.0 /(a4+a5(1500) (1.0 +lnl500) - a6(2000) ); 
 1.0 =1.0 / a4+aS(1600) (1.0 +1n1600) - a6(2200) ) 
 

Simplifying each equation respectively: 
 
 0.667 = a4 + 7907.76 a5 - 2000 a6; 
 1.000 = a4 + 12469.83 a5 - 2000 a6; 
 1.000 - a4 + 13404.41 a5 - 2200 a6 
Solving the three equations simultaneously: 
 

a4 = 0.7174 
a5 = 0.000073066 
a6 = 0.00034143 
 

The second step is to solve for the parameter al. Simply substitute all known 
parameters and variables into equation 19 and solve. At this point all 
parameters and variables are known except for al (recall a7 was specified by 
the designer): 
 
28490 = al(25).8   (10).2 

 (.71 +.000073 * 1000 - .000341 * 2000) .5 
 *1000 2000.5 

 
Solving the above equation for al we get: al = 10.0. 
 
Note that a1 is a scaling factor and does not affect the shape or properties of 
the short-run cost function. The final total variable cost equation becomes: 
 

.8 .2 (.7174 + .000073 * Q - .0003414 * K) .5 
TVC =10(Pl).8  (Pm).2  Q(.7174 + .000073 * Q - .0003414 * K) K 
 
Once the parameters of the cost function are known, the input levels for 
labor and materials may be derived by substituting into equations 22 and 23 
the values for TVC given any level of Q, P1, Pm, and K. 
 

L = 0.80 (TVC)/25 
M = 0.20 (TVC)/10 

 
The input levels derived in this manner are consistent with the “dual” 
relationship between cost and production. Since TVC depends on the level 
of K, Q, Pl, and Pm, the input demands, L and M, are also a function of 
these factors. 

SIMULATING THE SYSTEM 
 
The short-run cost and “dual” production system will be simulated using the 
estimated parameters in the numerical example above to illustrate its 
characteristics: and to demonstrate the relationship between variable costs, 
fixed costs, and the production function. 
 
The simulation first assumes capital, K, is fixed at 2000 units and then 
increases capital to 2200 units. The production rate is varied between 1200 
units and 1800 units, in increments of 100 units. Factor prices are fixed at 
$25, $10, and $1 for labor, materials, and capital respectively. Tables 1 and 
2 summarize the cost characteristics of the system.. 
 

TABLE 1 
Impact of changing Output Levels on Costs given Capital fixed at 

2000 units 
 
Outpu
t 

TFC TVC TC AFC AVC ATC E 

1200 2000 32547 34547 1.67 27.12 28.79 1.25 
1300 2000 34786 36786 1.54 26.76 28.30 1.16 
1400 2000 37180 39180 1.43 26.56 27.99 1.07 
1500 2000 39741 41741 1.33 26.49 27.83 1.00 
1600 2000 42483 44483 1.25 26.55 27.80 0.94 
1700 2000 45419 47419 1.18 26.72 27.89 0.88 
1800 2000 48564 50564 1.11 26.98 28.09 0.83 
 

* TFC = (Pk)K = (1) (2000) = 2000 
 

TABLE 2 
Impact of changing Output Levels on Costs 

given Capital fixed at 2200 units 
 
Outpu
t 

TFC TVC TC AFC AVC ATC E 

1200 2200 21035 23235 1.83 17.53 19.36 1.37 
1300 2200 22359 24559 1.69 17.20 18.89 1.26 
1400 2200 23777 25977 1.57 16.98 18.56 1.16 
1500 2200 25296 27496 1.47 16.86 18.33 1.07 
1600 2200 26922 29122 1.38 16.83 18.20 1.00 
1700 2200 28664 30864 1.29 16.86 18.16 0.94 
1800 2200 30529 32729 1.22 16.96 18.18 0.88 
 

*  TFC = (Pk)K( = (1) (2200) = 2200 
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The simulated data are consistent with the apriori specifications of the 
designer. Increasing returns to the variable inputs occur until the output 
elasticity, E, is 1.0 and average variable costs are minimized. In Table 1, 
where capital is fixed at 2000 units, average variable costs decline until a 
production rate of 1500. In Table 2, where capital is fixed at 2200 units, 
average variable costs decline until a production rate of 1600. After the 
production rate where AVC is minimized (E=1.0), decreasing returns to the 
variable inputs occur, the output elasticity, E, becomes less than one, and 
average variable costs begin to increase. 
 
Average total costs, ATC, change in a manner consistent with changes in 
average variable costs, AVC, and average fixed costs, AFC. Specifically, 
the average total costs are “U” shaped with the minimum levels occurring at 
a production rate greater than the rate corresponding to the minimum AVC. 
In Table 1, ATC is minimized at a production rate of 1600 whereas AVC is 
minimized at a production rate of 1500. In Table 2, ATC is minimized at a 
production rate of 1700 whereas AVC is minimized at a production rate of 
1600. 
 
Economies of scale are also reflected in the cost structure. As capital is 
increased from 2000 to 2200 units, the minimum ATC declines from 27.80 
$/unit in Table 1 to 18.16 $/unit in Table 2. The degree in which economies 
of scale occur in the simulated cost structure was determined by specifying 
the output elasticities, E, corresponding to the different levels of capital, K; 
and the capital elasticity value, a7. 
 
The “dual” production function implied by the cost structure can be 
observed by applying Sheppard’s lemma and using equation 22 to derive 
the input demand for labor. Given the same production rates (1200 to 1800), 
and changing the capital input from 2000 to 2200 units, Table 3 summarizes 
the results. 
 

TABLE 3 
The Dual Production Function implied by the Cost Structure 
 
 K = 2000 K = 2200 
Output Labor APl Labor APl 
     
1200 1041.5 1.152 673.13 1.783 
1300 1113.2 1.168 715.51 1.817 
1400 1189.8 1.177 760.89 1.840 
1500 1271.7 1.179 809.49 1.853 
1600 1359.5 1.177 861.53 1.857 
1700 1453.4 1.170 917.26 1.853 
1800 1554. 1 1. 158 976.95 1.842 
 
The simulated production function for labor is observed to behave in a 
manner consistent with duality theory. The average product of the variable 
input (labor), APl, is the “dual” of the average variable cost. When AVC 
decreases, the average product of labor increases. When AVC is at its 
minimum level, the average product of labor is at its maximum value. As 
the level of the fixed input, K, is increased from 2000 to 2200 units, the APl 
increases in tandem with the decline in the AVC and ATC observed in 
Tables 1 and 2. In this way, economies of scale on the cost side are mirrored 
by increasing returns to scale in the production technology. 
 
The second variable input, materials CM), was also simulated and shown to 
behave in a consistent manner with duality theory but the results are not 
shown for sake of brevity. 
 

CONCLUSIONS 
Students using business simulations are supposed to learn, experientially, 
how the “real world” functions. Consequently it is important for the 
algorithms within the simulation to reflect, as much as possible, the 
relationships observed by empirical studies of the business environment. 
Although the theoretical and empirical properties found in the literature are 
well known, quantifying these relationships in a simulation are not straight 
forward. The functional forms used in a simulation need to be flexible 
enough to model a wide range of cost and production relationships, while 
maintaining the characteristics of stability and consistency. The intent of 
this study is not only to present an approach for modeling the supply side of 

 the firm, but to encourage other simulation designers to share, to a greater 
extent, the way in which they have modeled their simulations. This type of 
research should help simulation users better understand the cause and effect 
relationships embodied within the “black box” of business simulations. A 
better understanding of simulations by users and designers can only help 
facilitate the growth, development, and use of business simulations and 
experiential learning. 
 
Specifically this study has argued that the properties of duality theory need 
to be addressed when designing short-run cost and production functions. 
The characteristics of the cost structure embodied in a business simulation 
imply certain characteristics relating to the production technology. If these 
relationships are not carefully modeled, inconsistencies between production 
and cost structures may develop. A review of the literature has indicated 
that there are some common problems in the way in which contemporary 
business simulations have designed there cost and production relationships. 
 
The methodology developed in this paper to model the cost structure and 
production technology of the firm possesses a number of desirable 
properties: 
 
(1) Cost information is used first to model the firm, and then applied to 
derive the associated production technology. This reduces the need to 
collect both cost and production data to model the firm. Also, cost 
information is more accessible than production information, making data 
collection easier and quicker. 
 
(2) The application of Sheppard’s lemma guarantees the characteristics 
designed in the cost structure will be embodied, in a consistent fashion, to 
the production technology of the firm. This will help avoid some of the 
pitfalls found in prior studies relating to the design of contemporary 
business simulations. 
 
(3) The short-run cost function relates total variable costs directly to 
variable factor prices, the production rate, and the level of the fixed factors 
(e.g. capital). Non-separability between variable and fixed factors is 
assumed, making variable costs also a function of the level of the fixed 
inputs. This approach allows for variable elasticities, increasing and 
decreasing returns, and economies and diseconomies of scale. 
 
(4) The parameters of the multiplicative functional form are easy to 
estimate. Only a limited amount of data is required to design the 
characteristics of the cost and production system, as indicated by the 
numerical example in this paper. The functional form is flexible enough to 
model a wide range of cost and product ion functions. 
 

REFERENCES  
 

Bernt, Ernst. R. & Christensen, Lauritis R.. (1973) The Internal Structure of 
Functional Relationships: Separablity, Substitution, and Aggregation,” 
Review of Economics and Statistics, Vol. 40(3), pp. 403 - 406. 
 
Decker, R., LaBarre, J., and Adler, Thomas (1987), “The Exponential 
Logarithm Function as an Algorithm for Business Simulation”, 
Developments in Business Simulations & Experiential Exercises, Vol. 14, 
pp.47 -49. 
 
Dickson, E.G., and Kinney, Paul T., (1982), “A New Generation in 
Business Simulation,” Developments in Business Simulations & 
Experiential Exercises, Vol. 9, pp. 256 - 259. 
 
Frazer, J. Ronald (1983), “A Deceptively Simple Business Strategy Game,” 
Developments in Business Simulations & Experiential Exercises, Vol. 10, 
pp. 98 - 100. 
 
Gold, 5. (1990) “Modeling Cost Functions In Computerized Business 
Simulations: An Application of Duality Theory and Sheppard’s Lemma”, 
Developments in Business Simulation & Experiential Exercises, Vol. 17, 
pp. 70 - 72. 
 
Gold, S. and Pray, T., (1989) “The Production Frontier: Modeling 
Production in Computerized Business Simulations,” Simulation & Games: 
An International Journal of Theory. Design, and Research, Vol. 20. 
 



Developments In Business Simulation & Experiential Exercises, Volume 18, 1991 

 37

Lambert, Nancy, and Lambert, David (1988), “Advertising Response in the 
Gold and Pray Algorithm:  A Critical Assessment,” Developments in 
Business Simulations & Experiential Exercises, Vol. 15, pp. 188 - 191. 
 
Sheppard, R. W., (1970) Theory of Cost and Production Functions, 
Princeton: Princeton University Press, 1970) 
 
Teach, Richard, D., (1990) “Demand Equations Which Include Product 
Attributes”, Developments in Business Simulation & Experiential 
Exercises, Vol. 17, pp. 161-166. 
 
Teach, Richard D. (1984), “Using Spatial Relationships to Estimate 
Demand in Business Simulations,” Developments in Business Simulations 
& Experiential Exercises, Vol. 11, pp. 244-246. 
 
Thavikulwat, Precha, (1990) “Consumption As The Objective In Computer-
Scored Total Enterprise Simulations,” Developments in Business 
Simulation & Experiential Exercises, Vol. 17, pp. 167-169. 
 
Thavikulwat, Precha, (1989) “Modeling the Human Component of Business 
Simulations,” Developments in Business Simulation & Experiential 
Exercises, Vol. 16, pp. 37-40. 
 
Thavikulwat, Precha, (1988), “Simulating Demand in an Independent-
Across-Firms Management Game,” Developments in Business Simulation 
& Experiential Exercises, Vol. 15, pp. 183-187. 
 
Walters, A. A., (1963) “Production and Cost Functions,” Econometrica, 
Vol. 31, No. 1 (January) , pp. 1-66. 
 
Whitney, Gary, et. al, (1990) “Teaching the Management of Technology,” 
Developments in Business Simulation & Experiential Exercises, Vol. 17, p. 
232. 


	Table of Contents
	Volume 18, 1991
	Personality Types and Total Enterprise Simulation Performance
	Using DIS 'n DAT as a Decision Support System for a Marketing Simulation Game
	Theoretical Derivation of a Market Demand Function for Business Simulators
	The Ethnographic Case Study: An Experiential Approach to Teaching Retail Management
	Electronic Bulletin Board Systems (BBS): Support Software for Computer Simulations
	The New Budget Game
	Negame: A Cross-Cultural Role-Play to Introduce Students to the Familiarization Stage of Negotiations
	Modeling Short-Run Cost and Production Functions Using Sheppard's Lemma in Computerized Business Simulations
	Increasing Simulation Realism through the Modeling of Step Costs
	Predicting Simulation Performance: Differences Between Groups and Individuals
	A Facility Location Case to Stimulate Classroom Interaction
	Educational Effectiveness of Business Simulation Gaming: A Comparative Study of Students and Practitioner Perspective
	Ethical Dilemmas in Experiential Learning: Issues and Strategies
	A Critical Review and Assessment of ABSEL's Award-Winning Procedures and Protocols
	Political Risk: A Simulation for Business Practitioners
	Upside Down: A Cross-Cultural Game in Experiential Learning
	Gorby's Dilemma: From Communism to Free Enterprise in Two Hours
	Strategic Market: Planning with the COMPLETE Product Portfolio Analysis Package:  A Marketing Decision Support System
	Career Concepts and Total Enterprise Simulation Performance
	Experiential Learning in Human Resources: A Performance Appraisal Application
	Managerial Motivation and Realism Among MBA Student as Viewed through The Looking Glass, Inc. Simulation
	An Experiential Approach to Teaching Data Analysis Using MYSTAT: Rationale, Procedures and Results
	Practicing What Was Preached: A Sequential Learning Model put to the Test
	Student Attitudes about Policy Course Simulations
	An Investigation of the Relationship Between Simulation Play, Performance Level and Recency of Play on Exam Scores
	The Effect of Leadership and Cognitive Processing Styles upon Peer Performance Evaluation: Implication for the Utilization of Simulations in Business Pedagogy
	On the Transfer of Market Oriented Business Games to Socialist Cultures
	An Application of Financial Analysis of the Business Firm in a Simulated Competitive Environment
	Collective Bargaining Simulation: An Exercise based on a Familiar Theme
	Making Business Policy a Strategic Management Experience
	A Student Exercise for Intergrating the Concepts of Power and Motivation
	The Boundaries Extended: An Experiment Comparing Dialectical Inquiry, Devil's Advocacy and Consensus Using the Executive Game
	Using a Simulation Package to Develop a Simulation Exercise in Cost Accounting
	Success Factors in Experiential Training for Creative Problem-Solving Teams
	An Experiential Approach for teaching Quality management
	Critical Success Ratios: A Comparison of Two Business Simulations in a Multi-Year Environment
	Stocklogs: A Classroom Exercise for Teaching the Logistical Relationship of Location and Inventory
	The Organizational Leadership Program
	Simulating Business Decision-Making: Using Statistical Cases for Classroom Exercises
	Scripting for the Classroom
	Upgrading the Business Strategy and Policy Game
	Developing Student Team-Building and Leadership Skills Using Computer-Aided Experiential learning Strategies
	Organizing and Outward Bound Field Trip
	An Architecture for Extensible Simulation Games
	Performance in the Capstone Business Course: What is the effect of Pedagogy, Learning Styles, and Student Motivation?
	Operational Strategy with Participant-Modifiable Parameters
	An Example of a Personal Selling Case Transformed into a Role Play Scenario
	Instructional Software: It's Evolution and Current State of the Art in the Business Curriculum
	Ascertaining Performance Variables for use in Determining Student's Grades in Courses Employing a Business Simulation
	Designing Management Seminars Using Business Simulations
	The Accounting Information Systems Course: Bridging the Gap between the Classroom and the Real World
	The Good Cooks Guide to Training
	Excellence: Working with Passion
	A Demonstration on Multiple Data Collection Methods: Seeing Strategic Issues Through the Looking Glass Simulation
	Systems Analysis and Design: Why Undergraduate Education gets a Failing Grade
	Accommodating Organizational Culture: An Evaluation of Management Development Delivery Modes in Varying Organizational Cultures
	Modeling Total Quality into Business Simulations
	The Political Futures Game
	Meeting Meeting Objectives


