
Developments in Business Simulation & Experiential Exercises, Volume 13, 1986

 256

THE DESIGN OF SIMULATION MODELS USING THOUGHT ORGANIZERS

F. Paul Fuhs, Virginia Commonwealth University

ABSTRACT

A new class of software has arisen. It has its evolutionary
roots in word processors, but far surpasses word processing
functional capabilities to manipulate the structure of ideas
during the development process of written text. This class of
software is called Thought Organizers. In this paper we
extend the use of thought organizers to the development of
simulation models. We demonstrate why and how these
packages are appropriate for the design and implementation
of simulation models.

INTRODUCTION

The development of computerized software for users can be
divided into two classes; application systems and simulation
models. The development of most application systems is a
team effort, involving the management and coordination of a
large number of analysts and programmers. Simulation
models, on the other hand, tend to be developed either by
professional software houses, again with the use of large
teams of people, and with hefty research and development
budgets or by individual designers whose models are smaller
in scope and whose model use is mostly for private
consumption. This paper addresses this latter population of
simulation model developers.

The development process of both application systems and
simulation models includes design stages and
implementation stages, beginning with specification of
model objectives and ending with computer code expressed
in some high level language. The design stages for a
simulation model include the determination of:

1. The overall objective of the model.
2. The sub-objectives of the model.
3. A realistic setting for the model.
4. The general scope of the model within that set ting.
5. The constraints on model development time.
6. The constraints on computer resources like CPU

time and equipment. [1]
7. The constraints on participants’ time to use the

model.
8. The entities, attributes and relationships within the

model.
9. The role of the user in relation to the model (passive

observer, active participator).
10. Which entities, attributes, and relationships should

be transparent to the user and which should be
explicitly described either before the model is run,
during its execution, or after execution.

11. User interface points within the model.
12. User input content and format.
13. Model output content and format.

The implementation stages include:

1. The selection of an appropriate simulation language
to express the model.

2. The translation of the conceptual design of the model
into functional specifications.

3. The decomposition of the functional specifications
into computer program modules.

4. The coding of each module into the simulation
language.

There are a number of tools available for general software
development. The National Bureau of Standards publication
on Software Development Tools divides software tools into
the following categories:

1. Software Management, Control and Maintenance
Tools

2. Software Modeling and Simulation Tools
3. Requirements/Design Specification and Analysis

Tools
4. Program Construction and Generation Tools
5. Source Program Analysis and Testing Tools
6. Software Support Systems/ Programming

Environment Tools

The first category is primarily for Data Processing
Departments confronting the problem of controlling
hundreds of computer programs. The fourth and fifth
categories are primarily devoted to the professional
programmer and these tools are not geared to the expression
of simulation models that are event driven. Of possible
interest to the development of simulation models are
categories 2, 3, and 6.

Applicability of Design Tools to Small-scale Model
Development

In these three categories of software tools there are many
tools for the development of entire computer systems and for
large scale modelling, but there is no noteworthy single tool
for small scale simulation model development. We
differentiate between small- scale simulation development
involving an individual designer from large scale
development because large scale development involves a
separate class of problems related to communication and
coordination between team members. Much research has
already been devoted to these type problems.

Tools now exist to handle large scale application system
development. However, these tools are not appropriate for
small scale simulation modeling for a number of reasons.
The first reason is cost. Many of these development tools
cost tens and even hundreds of thousands of dollars. This
expense is usually only warranted when the systems being
developed are large scale. Many of these tools are aimed
heavily at project management, which is inappropriate for
small- scale development. Also, many are complicated to
learn. Tools like SCERT which model large computer
systems can take months to learn and may require
specialized training under a vendor. Many such tools as
PSL/PSA have their own built-in computer languages that
must be learned before being useful. Here the expense is not
only in dollars, but time invested in the tool. An additional
reason why some of these large-scale tools are inappropriate
is that they themselves are simulation models that require the
user to master some of the intricacies of the model and the
database with which it works. Again SCERT is an example
of this type of tool. Many of these large

Developments in Business Simulation & Experiential Exercises, Volume 13, 1986

 257

scale development aids, when examined in detail, are not
generally applicable to a wide variety of systems
development. In reviewing the tools under the category
“Software Modeling and Simulation Tools” we find many of
these tools are restricted to the modeling of entire computer
systems. One example of this class of development tools is
“Performance Oriented Design”, (POD) that provides
designers and implementers with early warning of potential
performance problems and focuses attention on critical
problem areas. This does help to reduce total development
time and cost, but is of no help to the small scale simulation
model designer, who is not primarily interested in execution
time performance.

Many of these tools are restricted in distribution. For
example, “The Design Analysis System”, (DAS) is easy to
learn, is a general system modelling tool with interactive
graphics and automatic model generation as its key features.
It even contains an automatic documentation support system.
Nevertheless, it is restricted in distribution primarily to
Hughes subcontractors. Another reason is lack of portability.
By this we mean the tool has been developed to run on only
a restricted family of computers. The tool, “Design-Aids for
Real-time Systems,” (DARTS) is an example of a
development tool that is both distribution restrictive and
computer hardware restrictive. For example, it is for in-
house use only at the Charles Stark Draper Laboratory and it
is written in PL/1.

The problem before us is the fact that the development of
simulation models is a time consuming process. There is a
need for a single coherent computerized tool to support the
entire development process of simulation models, when
these models are to be developed by individual persons
rather than by large groups of designers.

The Thinking Process within the Design Process

When we sit down with a blank piece of paper or a blank
CRT screen before us, what is the thinking process for
system (or model) design? Structured Design techniques
dictate that we begin the design process on the highest level
of generalization, the highest level of abstraction. From there
the designer refines the specification adding lower levels of
detail until the design is complete. here the developmental
process is assumed to be both hierarchical and linear. It is
hierarchical in that multiple levels of abstraction are
recognized as the basic framework for systems design.
Structured design techniques and especially top-down
systems design implies a linear developmental process with
little or no iteration. One marches through the design from
top to bottom. After the highest levels of specification have
been layed out, one applies primarily a deductive approach
to the design process. Modifications are made to higher level
specifications only if absolutely necessary. Iteration is
judged to be aberration.

The Expression of Creativity in the Design Process

There are a number of well documented studies in both
Cognitive Psychology and Managerial Behavior to support
the view that designers are not ‘odd” or mentally deficient in
pursuing systems development iteratively [3,41. By iteration
in systems design we mean the changing of design
specifications on all levels of the design, not just patching at
a single level of abstraction. Iteration is for most designers
the normal modus operandi of the thinking process, whether
they are developing actual systems or simulation models.
Our minds dynamically follow conscious and subconscious

association trails, finding new relationships, developing new
concepts. and continually applying the principles of
induction and deduction. Through induction and abstraction
we make system specification changes on the higher, more
general levels of the simulation model. Through deduction
and lower levels of abstraction our minds flesh out
specification details. The important point is that in the
design process we simultaneously flesh out the design both
horizontally and vertically. A horizontal modification is a
change on the same level of abstraction. A vertical
modification is one that uses induction or deduction, thereby
changing ideas or specification topics on different
abstraction levels.

The introduction into the system life cycle within data
processing over the past few years of prototyping of systems
highlights the gradual acceptance of developmental iteration
into systems design methodology. As Ken Orr has said,
“Iterative development usually means that the user develops
a prototype of the desired system until he is satisfied with it;
then the prototype is tuned until it performs satisfactorily or
until the user identifies additional requirements” L51. User
requirements are no longer gathered at a single
developmental stage within systems design, the system built
and then handed over to the users, no matter how “well
structured.” This is especially true of large-scale systems.
The recognition of iteration is important to systems design in
general and critical for simulation model design, as we will
now discuss.

Differences in Designing Actual Systems and Simulation
Models

There is a fundamental difference between the design of
large-scale production type application systems and
simulation model design. In actual (non-simulation)
application systems that will be used to support business
decision making, the users data requirements impose strict
limitations on the creativity of the designer. These
requirements pre-define the output content, the output
format, the processing needed to be accomplished, and the
data to be stored. In this design environment structured
analysis and design techniques have a higher imperative and
iterative design a lower one. High level abstracted processes
like “order entry sub-system” and associated data structures
are usually easier to discover in the analysis part of the
design and obviously can not be allowed to fall through the
cracks by being overlooked. The sign-off procedures at
specific points in the design procedure by various levels of
management whereby they agree to freezing the design,
attest to the reluctance to include iteration in the design
procedure. The costs of retrofitting the design on the general
level after detailed levels have been designed excludes any
emphasis on iterative design.

However, in the design of small-scale simulation models
iterative design takes on more importance. The reason for
this is that this type of design is more open ended as to
objectives, model structure, inputs, outputs, and processing.
The entities, attributes, relationships, events, and processes
used in a simulation model are not as specifically pre-
determined by user requirements as application programs.
Simulation model designers are constrained by the reality
that they model and the level of competency of the users.
However, under this broad umbrella the simulation designer
has much freedom of expression. Since a model, by
definition, is an abstraction from reality, there is much
freedom for creativity.

Developments in Business Simulation & Experiential Exercises, Volume 13, 1986

 258

The Affect of this Creativity on Simulation Model Design

We do not mean to imply that structured design is “bad”. We
do imply that structured design alone is too restrictive.
Structured design must be complemented with the
realization that the human mind doesn’t create models of
reality in a linear fashion. The hierarchical aspect of the
Structured design approach does give us a framework for
developing models. But its linear aspect is too restrictive and
unproductive. To follow blindly the linearity aspect puts
simulation modelers in a Procrustean bed. This does not
change our creative processes nor overcome our mental
limitations. Therefore, what is good for the systems design
goose may not be good for the simulation model gander.
This difference in design methodology further restricts the
use of large-scale design tools for small-scale simulation
modeling.

Functional Criteria for a Design Tool

An acceptable design tool for simulation model development
must be hierarchical to include the top-down approach, yet
non-linear in its use. Such a tool must support at any given
point of time in the development process a tentative
hierarchical structure that can be modified rapidly on any
abstraction level. One should be able to flesh out the details
of an already given topic or idea at one minute and add
higher level ideas the next minute to another part of the
evolving model. Specifically, the tool should be able to
record and keep organized the infusion of new entities,
attributes, relationships, and processes into the creative
design of a simulation model. The tool must be able to keep
up with the creative flow of changes to the design as the
designer is interactively creating a simulation model at a
CRT. The tool must be able to do away with traditional
pencil and paper. An assumption we make is that the tool
will be used by a person who is comfortable with a computer
and can be creative while working with it interactively.

THOUGHT ORGANIZERS

A Thought organizer “is a tool that allows users to focus
their thinking on more concepts, to examine more
alternatives and to create more idea relationships --a
thinking aid that lets users easily shape and reshape ideas.”
L61. Like spreadsheets and desk organizer programs as
Sidekick the birth of thought organizers arrived on micro-
computers. The first such package was ThinkTank that came
onto the market in 1983. it was heralded as a new class of
software, one that had as its forebear word processing, but
far surpassing these packages. They are called brainstorming
tools, thought processors, or thought organizers. Their
purpose is to help users organize their thinking and thereby
be more creative in a shorter period of time. They are to
ideas what spreadsheets are to numbers. The most
recognized packages on the market today are MaxThink,
ThinkTank, THOR, and the Idea Processor. These packages
range in price from $60.00 to
$300.00.

Characteristics of Thought Organizers

The following general characteristics of Thought Organizers
are listed without reference to any specific software package,
but are given to show the reader some of the functional
capabilities of this group of software. The lowest level of
functionality is their ability to perform text editing as word
processors can, since word processing is a sub-set of their
capabilities. While MaxThink, for example, can do what

most word processors can do and more, editing functions,
however, do vary among the packages.

The word processing capabilities within the Thought
Organizers include functions internal to text and external to
text. External functions include getting on-line help,
performing operating system commands from within the
package, having file handling features like changing file
names, erasing, and saving files, reading in other text files or
parts of them to join with already existing work. Internal text
functions include being able to skip to the beginning or end
of a block of text, delete words and phrases, find words and
phrases within the text, replace words and phrases of text,
move text from one place to another, copy text from one
place to another, insert text within the body of already
existing text, add text to the end of existing text, format
output and be able to view how the printed output will look
before it is printed. In addition, one looks for the capability
to “undo” one or more functions when applied incorrectly.

Deficiencies with Word Processors for Model
Development

We have pointed out that two of the primary characteristics
of simulation development are the continual maintenance of
a hierarchical structure to the model and iterative design.
Word processors are not well suited for hierarchical
organization. Word Processors are not truly hierarchical.
They can manifest a single hierarchical structure through
indentation of text, but this structure does not support the
dynamic changes in structure that simulation model design
demands. For example, if the designer wishes to insert a
topic at a specific level in a hierarchy in Word- star, after
inserting the text, he is faced with two problems. All
subordinate levels in the hierarchy are no longer properly
indented and if he has numbered the topics or paragraphs for
reference, the number sequence is now out of order. There is
no automatic renumbering of ideas or topics in Wordstar.
Another problem with word processors is that all of the
levels are displayed on the CRT at the same time, unless one
were to go to great lengths to set up subordinate levels as
separate files. This does not help thought organization, since
the designer finds it difficult to distinguish the forest from
the trees. An additional purpose of a hierarchical structure is
to allow the designer to concentrate at any one time on a few
levels within a small part of the model, not to continually
have to view the entire model. This lack of hierarchical
structure in word processors is also a hindrance when one
considers the relatively long time it takes to navigate through
a large body of text. Most word processors jump through
text by moving through individual lines at a time, or by
paging forward or backward, or by jumping to specific
markers embedded in the text. An exception to this is when
one wishes to go to the beginning or the end of the text.
Nevertheless, what if the simulation designer wants to
immediately jump to topic 6 on level 3.7.8.7? Word
Processors are of no help here. A thought processor, built to
handle true hierarchical structures, can navigate to specific
hierarchical levels must faster. The reason for this is that
they internally maintain linked list structures to support the
hierarchy of ideas or topics.

The movement of blocks of text from one place to another
with word processors is clumsy and easily tends to break our
train of thought. Consider the difference between Wordstar
and MaxThink when both are to move a block of text located
in the middle of the screen to a specific location elsewhere.
In Wordstar we have to move the cursor to the beginning of
the

Developments in Business Simulation & Experiential Exercises, Volume 13, 1986

 259

block, type two characters, a control character and the letter
B, then move the cursor to the end of the block, again typing
two characters, a control character and the letter K. Then we
have to move the cursor down the text to the location we
wish to move it, and finally we type in two characters to
move the text. In MaxThink we issue one command “M 45
B 5.6”, which means move the current topic or group of
ideas labeled 45 to the position in front of (Before) the sixth
topic or group of ideas on level 5. Ideas can be moved
around without positioning the cursor at all.

Beyond Word Processors

Thought organizers have the capability to store and maintain
ideas and specifications for general model design as part of
the top-down design methodology. Some Thought
Organizers have the ability to store blocks of text and
graphics by multiple keywords. This is similar to database
functions of filing information as structured sets. One can
then sort these into different sub-sets. They have easy to use
navigational capabilities to support design iteration as the
designer makes changes to all levels of the design hierarchy.

MaxThink as a Thought Organizer

The functional characteristics of MaxThink illustrate the
power of thought organizers in designing simulation models.
There are two classes of functions for changing the design
structure of a simulation model. The first allows the designer
to change the order of a list of topics or a group of text at a
given level in the hierarchy. The Prioritize command
rearranges a list of topics or ideas. The designer can specify
the topic numbers in priority sequence and the list is not only
reorganized, but also renumbered into the new sequence.
The Randomize command performs the opposite by
shuffling a list into a random order so that the designer can
begin to develop a fresh viewpoint of the design. This can be
used to prevent the continuance of a partiality developed
‘mental set”. The Sort command is built within MaxThink
and allows topics to be sorted on any column and column
width. A tabular structure can be imposed on a list of topics
and sorted on any column as though the list were a small
database. The Divide and Join commands are reciprocal. The
Divide command splits up a single topic into multiple topics
using criteria of lines, words, phrases, or paragraph
splittings.

The second class of functions affects the hierarchy of topics.
The Binsort Command allows the designer to create
categories for topics and then to place the topics into the
appropriate categories. This is helpful in model building
when the designer discovers higher levels of organization to
the design specifications. This supports the process of
mental induction. The Fence command adds fences or
boundaries to a list of topics or text that is already in correct
order. The Categorize command can then convert the fences
to topics and automatically subordinate the fenced topics
under the associated fence. This supports the process of
mental deduction or hierarchical subordination. The Levelize
command is the reciprocal of the Categorize command.
There are times in the development of the model when we
wish to dissolve a part of the hierarchy into a linear list in
order to refashion it.

Proof of the Pudding

The Author has found from personal experience that the time
to design and implement simulation models can be cut to at
least 1/3 when compared with traditional methods using
pencil and paper, cut and paste, or even word processing. An
additional advantage of thought organizers is that this same
tool can be used for both simulation model design and
implementation. After the design is finished, the computer
programming of the model can be an extension of the design
by being included as the lowest levels within the design

hierarchy. This gives a continuity to the design and
implementation processes and produces a coherent set of
documentation ranging from the highest levels of model
abstraction to the lowest level of computer code.

SUMMARY

Thought Organizers are powerful tools for the
development of small-scale simulation models, when these
models are being developed by individual designers. They
aid in the construction and continual maintenance of
hierarchical structures for the creation of simulation model
specifications. They support well-accepted structured design
techniques and go beyond them to support iterative design in
which changes can be made to all hierarchical levels of the
design during the creative design process.

REFERENCES

[11 Fuhs, F. Paul, “A Simulation Model for Calculating

Session Time For Running a Simulation Model in a
Shared Resource Environment”, 12th Annual
Conference of ABSEL, 1985.

[2] National Bureau of Standards, Software Development

Tools, 1982, NBS Special Publication 500-88)

[3] Harrison, Allen F. and Robert M. Bramson, Styles of

Thinking, (Anchor Press: N.Y., 1982).

[4] Filley, Alan C., Robert J. House, and Steven Kerr,

Managerial Process and Organizational Behavior
(Scott, Foresman, and Co.: Dallas Texas, 1976)

[5] Orr, Ken, “Managing the Software Crisis,”

Computerworld, July 15, 1985.

[6] Nicholas C. and Carolyn Mullins, “The Organization

of Thought”, PC Week, January 29, 1985.

	Table of Contents
	Volume 13, 1986
	How to Use Microcomputers in Human Resource Management Courses
	What's My Line? An Exercise in Job Analysis, Description and Classification
	Relationships Between Team Cohesion Dimensions and Business Game Performance
	Four Factors Affecting Group Performance in Business Policy Simulations
	Enhancing Strategic Management Goal-Setting Skills in the Business Policy Course
	Using a Business Simulation in the Principles of Management Course - Learning Outcomes and Perceptions
	Personal Computers: Drexel's Experience
	Using Psychological Type to Enhance Negotiation Skills
	The Effects of Conflict Handling Styles on Negotiation Behavior: An Analysis of an Experiential Exercise
	An Experiential Test of Bargaining Decisions and Representation
	Self-Grading of Examination by Students, A Viable Alternative to Traditional Procedures
	Perceived Instructor Enthusiasm and Student Achievement
	An Experiential Approach to Teaching Subordinate-Oriented Communication
	Assessing the Effects of a Computerized Study Guide in Macroeconomic Principles: A Statistical Analysis
	A Sales Management Simulation for the PC an Integrative Tool for the Sales Management Course
	Teaching Re-evaluation of Salespersons Through the Use of a Simulation Game
	A Test of Student Performance and Attitudes and Performance Under Varying Game Conditions
	Developing and Testing Airways: A Marketing Simulation
	Experiential Learning Revisited: Some Thoughts on Designing More Adaptive Management Education Programs
	Developing the Competencies of Creativity and Accurate Self-Assessment
	Self-View and Norms: Some Longitudinal Laboratory Results
	Strategic Planning with an Experiential Case
	The ABSEL Research Consortium: Preliminary Steps and Position Papers
	An Analysis of ABSEL Conference papers (1974-1985)
	The Creation and Operation of a Data-base System for ABSEL Research
	Funding for a Research Consortium on Simulation and Experiential Learning
	Simulation - Indoctrination or Learning
	The Dilemma In Evaluating Classroom Innovations
	Personality Variables on Group Cohesion, Team Participation and Total Learning
	Justifications for and Problems in Developing and Using Computerized Experiential Activities
	Management Competency Models and the Life-Long Learning Project: What Role for ABSEL
	External Validity of Business Games
	Restructuring the University - An Experiential Exercise
	The Surrogate Class Exercise
	Images of Effectiveness: A Classroom Exercise
	The Algebran Industry: A Tutorial Framework
	Another Chance: A Multi-Leveled, Macro Business Game for Micro-Computers
	A Water Quality Management Simulation Game
	Acquisitions? Divestitures? Progress Report on a Conglomerate Game
	Enterprise: A Multi-Purpose Management Development Simulation
	Marketer: A Microcomputer Simulation in a High Tech Industry
	A Pedagogical Analysis of Alternative Tax Elections for Exploration Costs in the Mining Industry
	Using of Multiple Microcomputers Application Programs to Teach Fundamental Business Concepts and Practices
	Demonstrating the Role of Simulation in Strategic Operations Planning: A Case Study in Bank Check Processing Location Analysis
	The Subjective Side of the Decision Support System: A Pitfall for the Panacea
	A Group-Based Procedure for Revealing Judgmental Heuristics and Biases
	An Experiential Exercise in Bayesian Decision-Making
	Values for Selected Parameters in Physical Distribution Simulation and Games
	Computerized Business Management Simulations for Tyros
	The Management Decision Laboratory at New York University
	An Example: The Use of Management Games on Microcomputers by Computer Novices
	Enhancing Mainframe Simulation Via Microcomputers: Designing Decision Support Systems
	Integrating Personal Computers Into a Course as a Decision Support Tool
	A Decision Support System for Capital Funds Forecasting
	Performance and Attitudinal Affects of a Decision Support Package in a Business Game
	Using the Real World: Interviews with Woman Mangers
	The Cooperatively-Authored Student Handbook
	International Buying: An Experiential Exercise
	The Research/Teaching Interface: Turning a Pretest into an Experiential Exercise
	Building Microcomputer Business Simulations
	Simulation with Discrete and Continuous Mathematical Modeling
	An Interpolation Approach to Developing mathematical Functions for Business Simulations
	The Design of Simulation Models Using Thought Organizers
	The Assessment Center as a Teaching/Learning Device
	An Approach to Meeting the AACSB Guidelines for Introducing Skills and Personal Characteristics (SACs) Using an Interclass Simulating and Role-Playing Pedagogy
	Experiential Learning about the World of Work: A Program for Primary and Secondary School Educators
	Assessment of Relevant Personal Characteristics of Potential Entrepreneurs

