
Insights into Experiential Pedagogy, Volume 6, 1979

 280

THE DESIGN OF A DATABASE SYSTEM TO SUPPORT BUSINESS
SIMULATION AND EXPERIENTIAL LEARNING

F. Paul Fuhs, Virginia Commonwealth University

ABSTRACT

This paper extends the concept of variability in models and
cases beyond the use of random number generation to
include the appropriate substitution of facts and questions at
designated nodes within models and cases. The database
concept of program and data independence is applied to the
model construction process to support the model builder in
controlling the different associational paths which are
generated in a model or case, when one set of facts is
substituted for another. We present the design of a database
system, FAQSCAM (Facts and Questions for Simulations,
Cases, and Models) at the School of Business of Virginia
Commonwealth University. This system supports the data
and associational requirements of both computerized and
non-computerized cases and models. We describe how a
model builder can express desired associational paths within
a model, how these descriptions are incorporated into the
database, and how these paths can later be modified. We
demonstrate how a single logical generalized database
structure and a single physical database will simultaneously
support many cases and models, each having its own facts
and questions and its own logical structure of as8ociational
paths through the case or model.

INTRODUCTION

Simulation models and cases require considerable time in
the development phase of their life cycle. This time is
justified only if the models and cases can be used
repetitively. Unfortunately, the continued use of many
models and cases is limited not only by their content, but
also by their exposure to the participants, the population for
whom they were developed. If the participants are students,
variability of facts and questions within models and cases is
highly desirable. Variability of facts and questions in a
model or case allows the case or model to be used over a
number of years, allows a participant to interact mote than
once with the model or case, and prevents the detection of a
single set of ‘acceptable” answers.

This paper addresses the problem of controlling variability
in simulation models, games, and cases where random
number generation does not provide sufficient variability.
Since the methodology presented is applicable to simulation
models, games, cases and to some types of experiential
learning, the term “model’ will be used to imply all of these
forms of learning. The notion of variability in models is
extended in this paper to include the ability of the model to
pre- sent any one of a set of facts or questions at each of a
number of points in the dialog between the model and its
participants. This is referred to as text substitution, the
appropriate substitution of logically related facts and
questions. We point Out that variability creates associational
problems between blocks of text for the model builder in the
design phase and at those times when the model is used. A
methodology by which the model designer can structure a
model to incorporate variability and a means of expressing
this variability for computer input to a database is presented.
Text substitution can be accomplished without tearing apart

the fabric of a model by applying the concept of program
and data independence to the design phase of model
building. The database constructs of hashing and linked lists
can control the presentation of associated blocks of text to
participants, when they are interacting with either a
computerized or non-computerized model. Lastly, we show
how at Virginia Commonwealth University the different
logical Structures of many different models can
simultaneously be supported within one generalized logical
and physical database structure.

Information Flows in Models

One can view a model as a sequence of information flows
between the model (or model builder) and its participants. At
any given time in this sequence the participant is either the
communication source or sink. The model builder acts as
communication source by sending information to the
participant in two forms; facts and questions. The participant
assumes the role of communication source by responding to
questions, by inputting questions, or by actively changing
the direction of the dialog.

There are at least three types of information that can be
communicated to a participant through a model. The first is
Internal information; facts and questions pertinent to the real
world beyond the model or to a view of the real world as
presented by the model. Internal information is usually
related to the primary objectives of a model, whether the
objectives are to acquire a skill, to learn more about a certain
aspect of reality, or to enhance problem solving ability.
Interpretive information is the second type of information
found in models. Interpretive facts and questions pertain to
information about the role of the participant in the model,
how the dialog is to proceed, and the mechanics of how the
model itself functions to mirror external reality. The
debriefing process is in this interpretive information
category For it is important to ascertain at various points in
the presentation of the model whether the participant
understands the objectives, assumptions, and variables of the
model, as well as the underlying principles and theories.
Reflexive information is the third type of information found
in models. This category presents the participant with
feedback on his performance as he interacts with a model
and presents guidance on how the participant can improve
his role or behavior with respect to the model. In addition to
these three types of information there are times when it is
valid to deliberately communicate noise in a model
(irrelevant or illogical information), especially if one of the
objectives of the model is to teach the participant how to
distinguish noise from information.

TEXTUAL VARIABILITY

The flow of these types of information and noise between a
model and its participants is considered to be in the form of
text. Text can be a single value, a word, a phrase, a sentence,
or one or more contiguous paragraphs. A block of text
represents some arbitrary semantic unit to the model builder.

Every model has its own requirement for the different types
of information and for different amounts of

Insights into Experiential Pedagogy, Volume 6, 1979

 281

textual variability, depending on the model’s objectives and
content. Some models are relatively self-con-tamed and can
generate sufficient variability through their own algorithmic
processes, their use of random number generation, or the
conditional sequencing of their events and processes. Other
models are enhanced by the proper inclusion of substitutive
facts and questions, drawn from a database constructed and
maintained separately, but accessed by the model itself.

Problems of Logical Inconsistency

When a model builder desires to include textual variability
in a model, the danger arises of creating logical
inconsistencies between the facts sequentially presented, or
between the facts presented and a later question. This is
especially true, when the selection of facts and questions is
automated. Textual substitution comes in two forms;
equivalency and mutual exclusion. Two texts are equivalent,
if they are either synonymous or if, while they convey
different information, they do not create inconsistencies.
Two texts are mutually exclusive, if only one of these can be
p resented to a participant at one exposure to the model,
without creating logical inconsistencies. How can a model
designer structure a model to avoid logical inconsistencies?
How can a model be designed so that its related facts and
questions will be logically associated?

Link Paths and Levels

Linked lists are appropriate for maintaining logical
consistency in a model which incorporates textual
variability. A linked list is a group of ordered data items or
elements [1, p.57]. A link path is a path of associated
elements in a network, which network contains interrelated
and mutually exclusive elements. These definitions can
easily be extended to include ordered sequences of textual
material, that is, facts and questions. Informational link paths
can be made to exist between related facts and questions.

Each block of text, expressed as a set of facts or a single
question can be represented as a node in a network of nodes.
Each node can belong to one or more link paths. A block of
text is defined as constant or variable depending on the link
paths which flow through it. If all link paths flow through a
particular node, that block of text is considered constant for
the model. Every participant receives this block of text
within a sequence of information presented. The mutually
exclusive type of textual variability can be represented as
occurring when a parent node has more than one link path
leading from it. Such twin nodes of a common parent
represent mutually exclusive information. Textual variability
of the equivalent type can be represented at a node by sub-
nodes within that node. Modeling equivalent variability as a
set of sub-nodes preserves the capability of direct
substitution of any one of the sub-nodal texts within a node.
The representation of nodes along link paths preserves
logical consistency between not only facts, but also between
facts and questions.

Recognizing that a model has its own algorithmic and
branching structure, nevertheless, from the viewpoint of the
flow of information between a model and its participants, a
model may be structurally depicted as a linear sequence of
information.1 Since information is frequently presented in a
sequential manner, e.g. books, movies, and lectures, the
informational nodes of a model can be organized on a more
general level. The nodes of a model can be clustered into a
set of linearly arranged levels. The model designer
arbitrarily defines the number of levels. However, this

 1 An exception to this is the branching structure in dialogs of CAI,
where the information presented is dependent upon the
participant’s responses

number frequently is determined by either the functions
within the model, changes in the source-sink relationship, or
the link path length. The logical representation of the
information flow of a model is, therefore, a network of
nodes embedded within the framework of a sequence of
informational levels.

INFORMATIONAL NODE STRUCTURES

Figure 1 is an example of the use of levels and nodes to
represent textual variability within a model. This figure
shows the first seven levels of a model, its nodes of facts and
questions, and its link path structure. Each node is labeled by
a level number followed by an arbitrary, but unique node
number for that level. A node numbered Out of sequence
like node 3.6 represents a node that might have been added
after the original design of the model was completed. The
model designer is responsible for the design of such a
structure. The designer determines the number of levels and
nodes and the content of the material at each node. Each
node contains one or more sub-nodes. Each sub-node
represents equivalent text; either a set of facts or a single
question. For clarity the sub-nodes in figure 1 are not
depicted, but can be visualized as a third dimension
projecting upward from the surface of the paper. In figure 1
the dashed line from node 3.2 represents a link between the
sub-nodes of node 3.2. Other nodes may have similar links,
although they are not illustrated.

It is important to note that, while the node structure is
hierarchical, it is not a tree. The structure is a network, since
there are nodes which have more than one parent. For
example, in figure 1 node 5.OB is related to two parent
nodes, nodes 3.3 and 4.3. Also two or more nodes at the
same level can share a common parent. Such nodes as 3.3,
3.4, and 3.5 are called twin nodes. It is the network aspect of
the node structure which allows a model to simultaneously
contain both constant and variable text. Constant text is
represented at a level by one physical node having one sub-
node, such that all nodes of previous levels have their link
paths flow through this node. Variability is represented by
not only multiple sub- nodes within a node, but also by twin
nodes.

Information is presented to the participant beginning at level
L At each level only one node of twin nodes is selected and
within that node only one sub-node is presented to the
participant. For example, in figure 1, after a set of facts at
node 2.2 is presented, there are three mutually exclusive
twin nodes; nodes 3.3, 3.4, and 3.5, any one of which may
be selected. Every level need not be used as seen in figure 1,
where there is a direct link between nodes 3.3 and 5.OB.

Questions also can be considered equivalent or mutually
exclusive. If they are considered equivalent text, the
questions are represented as sub-nodes. However, when the
model designer desires to introduce two or more different
kinds of questions, these are expressed as individual,
mutually exclusive nodes. For example, the model designer
may wish to divide questions into categories based on their
degree of difficulty. In Figure 1 nodes 4.1 and 4.2 are sets of
such questions on different link paths. Each question node
may have up to two links extending from it, as shown by the
dashed lines extending from node

Insights into Experiential Pedagogy, Volume 6, 1979

 282

4.1. One link is for sub-nodal (equivalent) questions. The
other link is for text containing the answer(s) to each
question.

Figure 1 also demonstrates how the model designer can
build supplementary link paths into a model to aid the
slower learner. The link path from nodes 2.1 to 3.2 to 3.6 to
3.1 is a supplementary path, longer and perhaps more
detailed than the more direct path 2.1 to 3.1.

Physical versus Logical Nodes

While it is true that all node structures and link paths are
logical structures, we introduce the concepts of a physical
and a logical node to handle a problem created by the fact
that the node structure is a network and not a tree. The
problem arises when link paths join at a coon node and that
common node is not the end of these link paths. When one
exits from a common node, different link paths may be
needed to preserve logical consistency. For example, in
figure 1 the dashed line around level 5 encloses constant
text. Therefore, all link paths contain this same set of facts
When level 5 is viewed in terms of textual content, there is
one physical node, node 5.0. But, questions 6.1 and 6.2 are
based on the facts given in node 3.1, while questions 6.3 and

6.4 depend upon facts from either 3.3 or 3.4. Thus the
physical node 5.0 must have different link paths extending
below it. To preserve such logical consistency the physical
node 5.0 is divided into three logical nodes; 5.OA, 5.OB,
and 5.0c.

Figure 1 shows how an informational node structure can
simultaneously represent and maintain associational
variability, associational necessity, and the prevention of
associational inconsistency. Nodes 3.3, 3.4, and 3.5
demonstrate associational variability. The linking of nodes
to constant text and the linking of answers to specific
questions manifest associational necessity. The prevention of
associational inconsistencies is maintained by non-
intersecting link paths. For example, in figure 1 the question
at node 6.4 can only be asked of a participant, if the facts at
node 2.2 are first given.

INPUT OF NODE REPRESENTATIONS

After the model designer determines appropriate facts,

Insights into Experiential Pedagogy, Volume 6, 1979

 283

questions, and answers and finishes laying out the node
structure of the model, the next step is to prepare this
material for computer input to a Database Management
System. There are two types of input. One is a description of
the informational node structure. The other is the textual
material of facts, questions, and answers.

Nodal Input

The logical associations between the nodes are expressed as
inverted lists. Figure 2 illustrates how the node structure of

figure 1 is represented for computer input. A delimiter (&)
prefaces each node. The number immediately after the
delimiter is a node number. All numbers after the first node
number, until the next delimiter, are nodes linked to that
node. There is no theoretical limit to either the total number
of nodes or the number of nodes associated with a given
node. The model designer may forte or restrict the selection
of certain link paths. In figure 2 the F after node 3.2
represents a forced link path. The model builder may also
wish to temporarily prevent certain facts or questions from
being presented to the participants, until a later time, such as
an examination period. The “R after node 3.5 in figure 2
shows such a restricted path. The node representation in
figure 2 becomes input to a computer program called “the
Builder.” This program constructs the actual database
linkages and is explained in the section, Models in a
Database Environment.

Input of Facts, Questions, and Answers

Text in the form of facts, questions, and answers is then
associated with nodes and entered as input to the Builder
program. This program also writes the text into the database
and constructs all necessary associations in light of the node
structure inputted. Figure 3 is an example of text input based
on part of figure 1. The numbers in parentheses at the right
of each entry in figure 3 are for illustration only. Each entry
in figure 3 contains a beginning delimiter (&&) a node
number, a specification of whether the entry is a fact (F), a
question (Q), or an answer (A), and an ending delimiter (&),
followed by one or more lines of appropriate text. Each entry
can have an unlimited number of lines of text. Sub-nodes
within a node are designated for a fact or question by

specifying the same node number for two or more entries.
The second and third entries in figure 3 are sub-nodes within
node 2.1. Answers are placed immediately after the question
to which they refer. A question may have more than one
answer. Entries 6 and 8 are sub-nodes within node 3.2.

The nodal input, the text input, and the Builder program are
but part of the larger database system. A rationale for the
database system and an explanation of how it functions are
presented in the following sections.

PROGRAM AND DATA LNDEPENDENCE

Before the advent of Database Management Systems
(DBMS), traditional file handling systems posed serious
problems for application systems designers, when they faced
the task of making structural changes to data. Usually a
change, whether of data type or data association,
necessitated changing not only the data, but also the
programs which manipulated the data. The model builder
has had this same problem when creating and maintaining
computerized models. Frequently, models go through a
number of evolutionary refinements before the creator is
satisfied that the learning objectives will be met. When text
and text substitution are to be incorporated into a model, the
problem of changing and maintaining data associations is
even greater. When changes must be made to either the data
or its associations, the model builder does not wish to tear
apart the algorithmic (program) part of a computerized
model. The model builder wishes program and data
independence; the ability to change data and its associations
without having to modify the programs which utilize the
data.

Database Management Systems provide this independence
by acting as intermediaries between the physical database
and the application programs. The binding process in DBMS
is no longer between application programs and data
associations, but between application programs and the
DBMS on the one hand, and between the DBMS and the
data associations on the other. In a DBMS associations
between data are logically defined to the DBMS and
physically controlled by the DBMS.

Program and data independence, which is provided by a
DBMS, allows the model builder to define the logical
associations between blocks of text and then to hand control
of these associations over to the DBMS. The model builder
is then free to concentrate on the program or algorithmic part
of the model and not be burdened with having to control the
data and its associations,

Insights into Experiential Pedagogy, Volume 6, 1979

 284

which support the model. In a DBMS environment the
model builder can modify the program or the data
independently of each other.

Models, cases, games, and other experiential learning
techniques, which Incorporate textual variability, can also be
viewed as having two components; an active, algorithmic,
program component and a more passive data component.
The relative mixture of these components differs, depending
upon the proportion of algorithmic processes and text in a
model. Cases and simulation models exemplify this
difference. Once the textual associations have been built into
a case and control handed over to a DBMS, the program part
of the case is minimal. Cases, each containing their own
substitutive text, can be presented to their participants under
the control of a small driver program. Such a program,
interacting with the DBMS, merely follows associational
link paths through the database from the beginning to the
end of a case, selecting allowable blocks of text. Simulation
models, however, frequently contain numerous algorithmic
processes, with continual transfer of control between data
retrieval and the execution of algorithmic code.

MODELS IN A DATABASE ENVIRONMENT

Figure 4 illustrates the FAQSCAM system. This figure
shows the relationship between models, the database, and
the DBMS. This figure also shows the relationship between
the model builders, the participants, and the Database
Administrator. The FAQSCAM system is implemented on a
Hewlett Packard 3000 Series II computer. The database is
supported by HP’s IMAGE DBMS software. System
development was in four phases.

In phase I the Database Administrator (DBA), a faculty
member, created one generalized database schema.

A schema is a definition of the data items (fields), the data
entries (records), data sets (files), and the logical
associations between these as well as the data set capacities
and access restrictions to the database. Using a vendor
supplied utility program the Database Administrator then
created an empty database.

In phase LI the DBA created the Builder program mentioned
previously. The Builder program superimposes the unique
associational structure of each model upon the one
generalized database structure. The Builder program then
writes text into the database.

In phase III the DBA created a database Retriever program
which simplifies the model builders’ interface with the
DBMS. The Retriever program is composed of two modules.
The first module handles data retrieval for cases and is
designed to produce cases which are used as offline non-
computerized cases. The algorithmic part of these cases is
completely subsumed under the driver program. Under the
control of a few parameters to this driver module, cases can
be automatically generated as handouts for class. Such
parameters include case number, password identification,
number of output copies, and a designation of whether each
copy for a class is to be textually similar.

The second module Interacts with computerized models,
which have their own algorithms. The interaction between
the models and the Retriever program involves processing
control and the direction of the flow of facts, questions, and
answers. The ordered transitions between a model’s
algorithmic processing and the retrieval of text is controlled
by the model itself. The program component of a model has
initial control and can abdicate degrees of control during its
processing. Each model interfaces with the Retriever
program through ordinary CALL statements, while the
Retriever program interfaces with the DBMS through
database CALL statements. Processing control can be
temporarily abdicated by the program of a model for one or
more nodes or levels. The extent of this abdication is given
in the CALL statements. Then the Retriever program will
follow link paths built into the database, access information
from the database, and interact directly with the participant
until control is returned to the model. A model’s program
retains processing control by generating calls to the
Retriever program to place information from the database
into working storage areas of the model’s program. An
alternative, but less frequently used, method of control, as
shown by the dashed arrow in figure 4, is a direct database
call to the DBMS. The Retrieval program, therefore,
provides not only flexibility in terms of processing control,
but also allows an easier interface for the model builder with
the DBMS. This interface is analogous to the functioning of
conversational database languages.

Information can be presented to the participants either from
the model or in a specified format from the Retrieval
program. The origin of the information is transparent to the
participants. A model may direct the flow of information to
itself or by default allow the retrieval of facts, questions, and
answers to be pre8ented to the participants. A fact may flow
to a participant or to the program of a model as input to a
parameter of the model. Questions flow directly from the
database to the Retrieval program and then to the
participants. A participant’s response to a question moves
directly to the Retrieval program for comparison with the
correct answer in the database. The correct answer and a
resultant comparison are given to the participant and
optionally to the model. Future extensions of the database
system will incorporate an automatic grading module.

Insights into Experiential Pedagogy, Volume 6, 1979

 285

Updating and Reorganizing the Database

The model builder or the D8A can modify the database as
shown in figure 4 through various utility programs. Changes
to the database are inevitable, but occur in different
frequencies depending upon the type of change. The
addition, deletion, and editing of sub-nodal facts, questions,
and answers are the most frequent types of database
updating. The addition and deletion of entire nodes is next in
frequency of occurrence. Less frequent is an associational
change between two or more nodes. A Hewlett Packard
conversational system called QUERY allows easy access to
the database for perusal and most updating. The least
frequent change is to the schema itself, which supports all
the models. Such a reorganizational change is made by the
DBA, using other vendor supplied utilities. First, the
database is unloaded to tape, then structural changes are
made to the schema, then the database is reloaded back to
disk. The unloading and reloading process takes less than 15
minutes.

Data Sets of the Database

There are four data sets in the database. Figure 5 illustrates
these data sets, showing the names of the most important
data items, the link structures within and between the data
sets, and an example of some of the data entries which
would exist, based on the nodal and text input of figures 2
and 3. The data sets are of two types; master, and detail data
sets. Data set 1 is a master data set. Data sets 2, 3, and 4 are
detail data sets. The entries in the master data set are stored
and accessed through hashing. Therefore, in figure 5 the
physical order of the data entries in data set 1 is for
illustration only. Each master entry also contains a number
of chain heads. Each chain head contains the address of the
first member of a set in a detailed data set. Other set
members are linked within the detail data set. An entry in a
master data set may be linked to entries in one or more detail
data sets. In figure 5 by convention a dot symbolizes a
pointer, while a zero designates an end of chain. For clarity
of illustration the physical position of the pointers or links in
figure 5, relative to the other data items in each data set has
been altered.

Data set 1 contains an entry for every sub-node of a model.
This data set has four data items and three pointers. The data
items include MODEL number, NODE number, SUB--
NODE number, and PATH TYPE. The latter is a designation
of whether a link path is forced, restricted, or neither. Sub-
nodes within data set 1 are associated with their respective
text in data set 4 via the TEXT link in data set 1. All facts,
questions, and answers are in data set 4. The first logical
entry in data set 1 is the dummy node 0.0. This is the
beginning of every model, since level 1 of any model may
have more than one textual starting point. The hierarchical
(HIER) link in data set 1 points to individual sets of twin
nodes in data set 2. Pointers in data set 2 join together all the
twin nodes of a common parent node in data set 1. For
example, node 1.0 in data set 1 is linked to node 2.1 in data
set 2, which in turn is linked to node 2.2 in data set 2. In data
set 1 the SUB-NODAL link associates a node in data set 1
with its sub-nodes in data set 3. For example, node 2.1 in
data set 1 starts a chain of two sub-nodes in data set 3. Thus,
data sets 1 and 2 reflect the hierarchical and mutually
exclusive associational structure of a model. Data sets 1 and
3 control logical equivalency.

In data set 1 rather than link every sub-node within a node to
the same entries in data set 2, a dummy
sub-node 0 is created for each node and entered into data set

1 by the Builder program. In data set 1 sub- node 0
represents the entire node, while sub-nodes greater than zero
represent actual sub-nodes. Since text is associated with each
real sub-node, each nonzero sub-node in data set 1 has
associated with it textual information in data set 4. Since
data entries with a sub-node of 0 in data set 1 represent an
entire node, these entries hold the chain heads for all
associated twin nodes in data set 2 and all associated sub-
nodes in data set 3.

These dummy entries are also used to indicate whether one
of the twin nodes of a parent contains a forced link path. In
data set 1 of figure 5 the data entry node 2.1 sub-node 0
specifies that there is a forced path in one of the twins of this
parent node. The Retriever program can examine each twin
node of 2.1 in data set 2 to find the forced path. Figure 5
shows that of the twins 3.1 and 3.2 in data set 2, the path
selected must be from node 2.1 to node 3.2.

The data items of data set 2 include the MODEL number,
the Predecessor (PRED) node and a Predecessor sub-node
(PRED SUB-NODE) from data set 1, the NODE number,
the TEXT TYPE and the PATH TYPE. The PATH TYPE
designates one of the twin nodes as a forced or restricted
node. TEXT TYPE is either Fact (F), Question (Q), or
Undefined (U). If TEXT TYPE is fact or question, data set 1
contains a link to the actual text in data set 4. When more
than one sub-node is associated with a node in data set 2,
TEXT TYPE is tagged as Undefined. Data set 3 contains all
the sub-nodes associated with each node and contains their
individual text types. In data set 3 a path type of forced or
restricted may be specified for individual sub-nodes.

Data set 4 contains the data items; MODEL number, NODE
number,. SUB-NODE number, the text LINE NO., and lines
of TEXT. This data set contains all facts, questions, and
answers for all models. Text is allocated in blocks of 72
characters. Blocks of text are linked together in data set 4 to
form variable sized facts, questions, and answers.

Generating a Database for a Single Model

When a model’s textual associational structure is to be
entered into the database, the Builder program first inputs a
nodal representation as in figure 2 and builds data entries
into data sets 1 and 2. For each node in the node
representation a dummy node of O and one node with a sub-
nodal designation of 1 are entered into data set 1. Each entry
of the inverted list associated with each node is translated
into a data entry and placed into data set 2. Each parent node
in data set 1 is linked via the HIER link to one of the child
nodes in data set 2. Other children of a parent are linked
together within data set 2. Forced and restricted nodes are
tagged; the parent in data set 1, the twins in data set 2.

When a node has more than one parent on the nodal
diagram, this is represented in the database by one node
entry in data set 2 for each parent. In figure 5 there are two
nodes labeled 3.1 in data set 2. The first entry 3.1 associates
the twin nodes 3.1 and 3.2. The second entry 3.1 has an
association with the parent node 3.6 in data set 1.

Nodes like 5.0, which must be represented as logical and
physical nodes, are entered into the database as follows. An
entry is created in data set 1 for the physical node 5.0, sub-
node 1. This entry will later contain an associational chain
from the TEXT link to text in data set 4. Each logical node,
5.0A, 5.OB, and 5.0C, becomes an entry in data set 1 with a
sub-

Insights into Experiential Pedagogy, Volume 6, 1979

 286

Insights into Experiential Pedagogy, Volume 6, 1979

 287

node of 0. Each of these entries are then associated with their
children in data set 2. Each logical node is also entered into
data set 2 and each is associated with their respective parent
nodes.

The Builder program next processes the text input (see
figure 3), builds associations between data sets (1 and 3) and
(1 and 4) and defines the text type for each entry in data set
2. Facts, questions, and answers are entered into data set 4.
Each line of text is associated with a sub-node in data set 1
and linked together with other lines of text as a unit in data
set 4. When equivalent text is first encountered, e.g. the
second sub-node of node 2.1, an additional sub-node is
created in data set 1 and two sub-nodal entries are created in
data Set 3. The latter two sub-nodes are linked together, after
having been linked to node 2.1 sub-node 0 in data set 1. The
new entry in data set 1 is linked to its text in data set 4.
Answers are associated with questions by sharing a common
sub-nodal prefix in data set 1. In figure 5 sub-nodes 1Q and
1A of node 3.2 illustrate this association. Multiple answers
to a question can be entered within the same block of text in
data set 4 or in separate blocks at the discretion of the model
builder.

Text Retrieval

An example of text retrieval based on the entries in figure 5
will demonstrate how the data sets of the database work
together to assume logical consistency. In this example
assume blocks of text are to be retrieved from the database
and presented to a participant for the first three levels of the
model. Note that there is a forced path through node 3.2 sub-
node 2. The Retriever program begins by hashing into data
set 1 on a key composed of the combined data items;
MODEL number, NODE number, and SUB-NODE number.
Ml-0.0-0 is the first key. After locating this entry its HIER
link points to node 1.0 in data set 2. Since the twin link in
data set 2 for this entry shows end of chain, node 1.0 has no
twins. And since the SUB- NODE link in data set 1 has an
end of chain for node 1.0 sub-node 0, the Retriever program
then hashes back irto data set 1 under key Ml-1.0-l and
follows the TEXT link from data set 1 to data set 4, where
each line of text associated with that sub-node is retrieved
and presented to the participant. When blocks of text were
entered into data set 4, they were linked in ascending order
by LINE NO.

The nodes on level 2 are then found by hashing into data set
1 using the key M1-1.0-0 to obtain the links to nodes 2.1 and
2.2 in data set 2. Since neither node is forced nor restricted,
one of the nodes is chosen at random. Assume node 2.1 is
selected. The TEXT TYPE value of Undefined in data set 2
specifies that there is more than one sub-node at node 2.1.
The key M1-2.1-0 is used to hash into data set 1 to locate the
two sub-nodes of node 2.1 in data set 3. Again, neither sub-
node is forced nor restricted, so one of these nodes is chosen
at random. If sub-node 2 were selected, the key Ml-2.l-2 is
used to hash into data set 1 to retrieve the associated text in
data set 4.

then the key M1-2.1-0 is used to enter data set 1 to find the
children of node 2.1. The PATH TYPE of “F” in data set 1
for entry M1-2.1-0 cells us that one of the twin nodes of the
parent node 2.1 has a forced link path. In data set 2 all twin
nodes of node 2.1 will be accessed until the forced node is
located. When the entry for node 3.2 is located in data set 2,
the key M1-3.2-O is used to hash into data set 1 to find the
links to the two sub-nodes of 3.2 in data set 3. Since the
forced path is through sub-node 2 of node 3.2, this sub-node
is selected. This entry is a question. Therefore, to locate the
text associated with this question the key Ml-3.2-2Q is used
to hash into data sex 1 to find the TEXT link to data set 4.
The answer to this question is easily retrieved by changing
the key to M1-3.2-2A and hashing back into data set 1 to

pick up the link to data set 4. This process is continued until
control is handed back to a model’s program or until the end
of the model is reached.

Extending the Database to Multiple Models

The power of the FAQSCAN system is in its capability to
simultaneously support multiple cases and models, each
having its own nodal structure. This one physical database
can contain entries from more than one case or model. Each
model is logically separated from the others, although entries
from different models may be physically adjacent to each
other in the database. The part of each key containing the
model number differentiates the models. Once hashing
occurs into data set 1 for a given model, entrance into the
other data sets is solely by way of associational pointers.
Since the Retriever program usually controls accesses to the
database, human accessing errors such as slipping from one
model into another are avoided.

Database Security

Database security is maintained in a number of ways.
Passwords must be given to the Retriever program to enable
the accessing of entries from the database. Attempting to
dump the physical contents of the database without
authorization is prevented by both the operating system and
the DBMS. Also the physical randomness of the models’
entries might discourage such attempts. As an added security
measure encryption of the text in data set 4 is a planned
extension to the FAQSCAN system.

REFERENCE

[1] Kroenke, David, Database Processing (Chicago: SRA,
1977).

	Table of Contents
	Volume 6, 1979
	The Use of Cases with Role Plays in a Research Methods Course
	Debugging and Implementing the Live-Case Approach to Marketing Research in the Australian Environment
	Using a Case as the Basis for a Modified Debate
	Using Cases in Business Communication Classes
	A Structured Approach to Case Analysis and Reporting
	Intercollegiate Case Analysis Competition as an Experiential Learning Experience
	Attributes Germane to Student/Live Case Situations
	Understanding Dispute Resolution Through Experiential learning
	Personality Development and Conflict Dynamics: An Experimental Design to Study the Effects of Teaching Methodologies on Conflict Resolution
	Interpersonal Competence and the Digital PDP-11:40
	The process of Writing a Collective Bargaining Simulation: A Case Study in Practical Pedagogy
	Simulating Negotiations in an Educational Context
	Simulations as a Technique for Teaching Collective Bargaining
	Experiential Processing of Differing Managerial Perspectives: The Use of a Game Show Format
	Individual Self Report vs. Group consensus in Small Decision-Making Groups
	Effects of Sex-Role Stereotypes on Promotion Decisions: An Exercise
	Computer Aids to Planning: The Budget and Forecasting Module
	Use of a Microcomputer in a Decision Analysis for Investment Portfolio Selection
	A Game of Investment Strategy: Description, Use, Criticism and Modification
	Coping with Future Uncertainties Through Probabilistic Budgeting
	Administration and Design of Simulation Materials for a Specialized Management Training Program
	Managing Stress in Organizational Life
	Banksim: The Bank Management Simulation
	Issues in the Organizational Application of Simulation and Experiential material
	Games Within Games: The Role of the Glitch
	Experiential Learning from Classroom to Business
	An Evaluation of the Small Business Institute Program as an Experiential learning Exercise
	Conversations with Top Management (Simulated)
	Experience in the Use and Assessment of Simulation in Management Education
	A Statistical Analysis of Simulation Users: Relationships between Stress and Human Subject guidelines
	Group Decision Making in a Computer Game Analysis of Demographic and Psychosocial Variables
	Comparing Performance During Three Managerial Accounting Simulation Schedules
	Business Policy Simulation and the Intense Course Structure
	The Use of Intensive Simulation in Executive Development and Academic Settings
	The Use of Experiential Exercises in the Undergraduate Consumer Behavior Course
	A Personal Marketing Strategy Approach: Framework and Application
	Teaching PERT Experientially in Marketing Research
	Discovering the Majority Fallacy
	An Experiential Approach to Studying International Business
	A Demonstration of the Business Simulation Game as a Curriculum Assessment Device
	Relating Teaching Methods with Educational Objectives in the Business Curriculum
	The Junior Achievement Applied Management Program as a Compromise Situation Between the Simulation and the Internship
	Who is Using Computerized Business Games?: A View from Publishers' Adoption Lists
	Trials and Tribulations in Testing Educational Innovations
	An Examination of the Perceived Effectiveness of Computer Simulation in a Classroom Setting as Affected by Game, Environmental and Respondent Characteristics
	Game Administration: A Life Cycle Analysis
	Research on the Effectiveness of Using a Computerized Simulation in the Basic Management Course
	Gaming and Attitudinal Change
	The Teacher-Student Relationship in Experiential Classes and the Student's Perception of Course Effectiveness
	An Exploratory Study of Student Characteristics and Educational Processes in Programmatic Experiential learning
	General Incongruity Adaption Level (GIAL) as a Predictor of Risk Preferences in a Simulated Management Game
	The Cap-Stone Opportunity: Combining Business Simulation and Experiential Learning
	Incorporating MIS/DSS into Policy Courses Via Simulation
	Who Benefits Most from Participation in Business Policy Simulations: An Empirical Study of Skill Development by Functional Areas
	The Use of Program NAMEX in Teaching the Accounting for Nonmonetary Assets
	The Use of Program CVP in Teaching Cost-Volume-Profit Analysis
	Experiential vs. Traditional Classroom Approach in the Basic Management Course: A Puerto Rican Experience
	A Guide to the Successful Use of Business Simulation Games
	The Dynamic Aspects of Interactive Gaming Puts the Realism into Gaming
	System Representation of SIMORG
	The Design of a Database System to Support Business Simulation and Experiential Learning
	A Data Entry and Retrieval System for a Computer Simulation (DERS)
	Simulation - An Advantage for Accounting Research
	Computer-Aided Project Performance Control Simulation: An Interactive Experiential Gaming Technique for Managerial Decision Making
	Utilization of Manual Simulation Games to Develop Scenarios of Future Events - An Exploratory Study
	Foundry: A Foundry Simulation
	Customized Debriefing: The Achilles Heel of Experiential learning?
	Computerized Business Simulations and Experiential Learning Exercises: An Instructional Interface
	The Baseball Game: A Group Role Observation, Problem Solving Experience
	A Practical Design for Experiential Learning Exercises: Roles, Technical Equipment and Alternative Debriefing Formats

