
Developments in Business Simulation and Experiential Learning, Volume 35, 2008 238

ISSUES IN PORTING A LAN-BASED TOTAL ENTERPRISE SIMULATION
GAME TO A WEB-BASED ENVIRONMENT

Sharma Pillutla

Towson University
spillutla@towson.edu

ABSTRACT

Business Simulation games have been used in capstone
courses and other business courses for more than four
decades. During this time games have morphed from paper
and pencil based approaches to a web-based approach. The
most recent incarnation of simulation games was a client-
server based approach where a client program is installed
on the user’s computer (players program on the student’s
computer) and a server program (game administrator’s
program on the faculty/instructor’s computer). The data
exchange between these programs was done using either
disks/flash drives or using a Local Area Network (LAN).
Since the advent of the World Wide Web many games are
moving from a LAN-based environment to a web-based
environment. In this paper, we examine the issues involved
in making such a move. The paper first lays out the different
types of simulation games and narrows down the scope to
the type of simulation game considered in this paper. We
then explain the functioning of the game on a LAN-based
environment. It then explicates how the game would be
configured on the Web. We then list issues that need to be
addressed in such a structure. We use the Microsoft .NET
framework in explaining how these issues can be addressed.
We conclude the paper with summary and future directions.

INTRODUCTION

Simulation games in the business field have been

around for more than four decades. In this time, the games
have undergone various changes and the field of simulation
gaming itself has become more sophisticated. Thavikulwat
(2004) developed a framework that delineated in broad
terms the architecture of a simulation gaming solution.
Since this is such a complex area, classifying business
games can be done on various dimensions including
purpose, control & interaction, representational systems,
timing, hosting and performance scoring. While all of the
above dimensions provide a comprehensive taxonomy of
gaming solutions, this paper does not deal with such a broad
array of games. We briefly discuss each of the above
dimensions and explain the specific focus of this paper by
narrowing down the category of simulation games
considered herein.

A wide variety of simulation games have been
developed including total enterprise (TE) simulations,
functional simulations, concepts simulations, planning
simulations, analysis simulations, computer enhanced role-

plays (Hall, 2005). Each category addresses a specific
structural aspect of the simulation. The focus, in this paper,
is more on the TE simulation though a lot of the aspects
could conceivable carry over to the other types of
simulators. Crookall et al (1986) look at the two axes of (a)
control – whether the game is controlled by the computer or
by the participant in the game – and (b) interaction –
whether there is more computer-participant interaction or
more participant-participant interaction. Based on these axes
values he classifies games into four classes – computer-
directed (akin to a teacher-less blackboard), computer-based
(aircraft simulation), computer-controlled (standard TE
simulations) and computer-assisted (real market
simulations). In the paper, we focus primarily on the
computer controlled variety of games, though the analysis
could be extended to the other types with facility and
minimum loss of applicability. In any event, as Thavikulwat
(2004) states, most of the TE games today tend to not use a
real market environment. So restricting the analysis to
computer-controlled and computer –based games would be
addressing the bulk of the gaming solutions in use today.

Thavikulwat (2004, 1999) also discuss two types of
representational systems – genotypical and phenotypical
representations. A phenotypical representation is a reflection
of the process and a genotypical representation tends to be a
subset of the former. “Thus, a phenotypical representation
of employment would have participants employ fictitious
persons; a genotypical representation would have them
employ each other. (Thavikulwat, 1999, p. 362). Most of the
concepts discussed in this paper would be equally applicable
to either form of representation.

This issue of timing is a little more nuanced.
Thavikulwat (2004) uses scaling (fixed versus flexible),
drive (administrator-driven, activity-driven, clock-driven)
and synchronization (synchronized, unsynchronized) as the
three parameters that distinguish between various gaming
solutions. These three parameters also tend to have
significant interaction with one another. A fixed scaling
simulation proceeds in broad time segments such as months,
quarters, etc. whereas a flexible scaling could vary from
broad time segments to smaller time segments to the
ultimate extreme of continuous time. Any real-time
simulation (such as aircraft flight simulation) would tend to
fall more towards the continuous time end of the continuum.
Most extant TE and functional simulations tend to follow
fixed scaling in that the gaming design only permits one
type of scaling as programmed into the application. In terms
of drive, clock and activity-driven simulations, in general,

mailto:spillutla@towson.edu

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 239

tend to use finer segmentation of the time scaling. Thus a
clock-driven activity could be segmented as low as a second
or a minute at which time the game progresses to the next
time unit. An activity driven game would most probably
have multiple decisions that might be made by the
participants (and each decision could constitute an activity
which progresses the time unit to the next one). A
synchronized game would require all participants to have all
decisions input by a certain deadline at which time the game
administrator would “run” the game as opposed to an
unsynchronized game that does not have synchronized time
segments driving the decision-making. Design issues in a
web-based game might be significantly affected by the
timing parameters. In this paper we address only one sub-
segment of games, i.e., those that have a fixed scaling, are
administrator-driven and are synchronized. Again, to the
best of the knowledge of the author, most TE and functional
simulations in use today tend to follow the aforementioned
sub-segment and hence focusing on this segment does not
diminish the importance of this subsequent discussion.

The next classification set forth by Thavikulwat (2004)
is based on the dimension of hosting and he lays out three
categories – stand-alone, LAN and Internet. In addition to
the above hosting categories, Pillutla (2003) expands the
third category further into Web-based and Internet-based
applications. Applications in the former category are
embedded in a web browser, while the latter use the Internet
(just like a LAN) primarily as a network medium to
exchange data. The focus of this paper is squarely in web-
based arena and we examine issues raised by the move from
a LAN based environment to a web-based environment.
Thavikulwat (2004) states that “a program written for a
stand-alone system can readily be extended to take
advantage of a LAN’s capabilities because a single
programming language can be used for both hosting
systems”. However, a move from a LAN based
environment to a Web-based environment is non-trivial.

Thavikulwat and Chang (2007) discuss issues in
moving an existing LAN-based game to an internet-based

application. They use “remoting” to retain the client-server
flavor of the game while using the Internet (instead of a
LAN) to accomplish the communication and data exchange
between the client and the server. While there have been
games that have been developed from the scratch for a web-
based environment (Forio Simulations, 2007), many of the
games that were originally developed to be played in a
stand-alone mode or a LAN environment may have to be
moved to a web-based environment. The popularity of the
WWW and its universal availability and accessibility as
well as the user-friendliness of the GUI as typified by
standard browsers all provide evidence that such a move is
inevitable.

We discuss next the architecture of a typical LAN-
based client-server configuration of a business simulation
game (keeping in mind the specific sub-segment of
simulation games that are the subject of this paper as set
forth earlier). Following that we lay out the issues that need
to be addressed when porting such a game to the web-based
environment. We finally conclude the paper by
summarizing the issues addressed and pointing to aspects
not considered in this paper that need to be addressed.

A LAN-BASED ENVIRONMENT

Most Total Enterprise and functional simulations that

were developed in the previous decades followed a stand-
alone or a LAN-based architecture. The business
environment modeled in such games tends to include game
players or participants that manage a functional area or the
total enterprise. As mentioned in the previous section, we
focus on those games that follow a synchronized,
administrator-driven, fixed scaling architecture. These
games constitute the bulk of the existing games in this
category. The primary process in such games involves a
student entering decisions for a particular period by a
specified deadline as stated by the instructor or game
administrator. At the conclusion of this deadline, the game

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 240

administrator consolidates decisions made by participants
according to the structure laid out in the game (by industry,
or by world) and “run” the game resulting in the generation
of outputs. These outputs could include a variety of
financial and other performance measures. Standard outputs
include income statements, balance sheets, cash flow
statements and other team and individual performance
measures arrived at by using various measures such as the
balance scorecard, pro-scores, z-scores etc. The primary
communication task that utilizes the LAN involves sending
the player decisions to the game administrator and sending
the game outputs to the player participants. Figure 1 lays
out one instance of a simulation game that follows a typical
LAN-based architecture.

Historically, the complete application involved (a) a
game administrator component and (b) a player/participant
component. These two components were two stand-alone
programs. The administrator application resided on the
game administrator’s computer and the player’s application
resided on the player’s computer. The integration of the two
was done solely through the exchange of data (decision
inputs and performance outputs) over the LAN. The LAN-
based storage acts as the data exchange medium that links
the two application programs. Thus, if one wanted to
replicate the above instance of a particular simulation game
on the same network, the administrator component would
allow the creation of multiple instances of the simulation
game with the appropriate game-pertinent parameters stored
in appropriate folders within the LAN storage environment.
Thus game-specific aspects such as number of industries,

number of companies, number of students in a company (if
the game tracks that) and industry, economic, product
initialization parameters would all be stored in a
configuration file on the LAN storage. The recognition of a
particular participant as belonging to one specific instance
would be done by storing the parameters on the LAN
storage and initializing the player application with the
relevant information.

The same architecture would be repeated on multiple
LANs which were each independent of the other. We
recognize that the primary characteristic of a LAN-based
configuration is the inherent de-centralization evident in the
implementation. Since each instance on one LAN would be
completely independent of another, the application would
not need the functionality for tracking and maintaining a
distinction between these multiple instances of the
simulation game. A move to a web-based environment with
a centralized web-server would thus entail additional
program logic that is lacking or less important in a LAN-
based implementation.

A WEB-BASED ENVIRONMENT

The primary advantage of a web-based environment is

its ubiquity and accessibility in today’s technological
environment. As long as one has Internet connectivity on
any computer at any location, one can potentially have
access to the simulation game. The familiarity of the web
and the browser indicates an unparalleled degree of user-
friendliness (both for the game-administrator and the

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 241

player/participant) that might not have been available on a
LAN-based application (depending, of course, on the
specific application). Both of these characteristics make a
web-based environment infinitely more attractive to the
game administrator and the player/participant alike.

The universal availability characteristic, however, is
premised on the notion that all aspects of the game are
centralized on a single web-server. Admittedly, the actual
architecture might vary from a single-tier to a two-tier to a
three-tier architecture. See Figure 2 for representative
illustrations of each type of architecture. Nevertheless,
regardless of this, a web-based implementation presumes a
degree of centralization that did not exist in a LAN-based
environment.

We notice therefore that unlike the LAN-based
environment, in a web-based environment, all applications
and data are centralized on the server (the actual location
being dependent on the specific architecture as depicted in
Figure 2). This characteristic raises a myriad of issues that
were non-existent in a LAN-based environment. Figure 3
depicts a typical web-based environment of a simulation
gaming solution. A few aspects of this environment deserve
explication.

Firstly, all application programs and data are
centralized on the web-server. This centralization implies
that while maintaining the multiple instances of a simulation
game on a LAN was not a major issue, differentiating
multiple instances of the game on a centralized web-server
becomes a major issue. If there are ten different game
administrators, each running two instances of the game,
maintaining each of these instances separate and distinct
involves identifying the instructor, the player or players (if a
team-based player participation is employed), ensuring that
each of them are presented with appropriate interfaces
depending on their role.

Secondly, with newer architectures such as this, there
tends to be an explicit database as opposed to file-based
systems of the past. Most LAN-based simulations tend to be
file-based representing the technological era during which

they were developed. The usage of relational databases
tends to provide for the explicit separation of data from
program rendering the development of applications much
more flexible. The availability of powerful query languages
like SQL provides for more flexibility and power in data
manipulation. Admittedly file-based systems – especially
those applications that use binary files – may have an edge
in terms of processing speed. However, since the data
definitions are tightly coupled with the program any
changes would be tedious and cumbersome. Most
applications today tend to use relational databases.
Developing the application can be done in a variety of
Integrated Development Environments (IDE). Dreamweaver
and Microsoft Visual Studio are two popular IDEs available.
The advantage of using MS Visual Studio is that it provides
a choice of programming languages including Visual Basic,
Visual C++, Visual J++ (Microsoft’s version of Java), and
Visual C #(pronounced C-sharp). The IDE also comes with
the SQL server express database engine which permits all
aspects of the application to be developed within the IDE.
We will use the Visual Studio 2005 using ASP.NET (.NET
framework version 2.0) technology in explaining the issues
that need to be considered and ways of addressing them.

SECURITY AND IDENTIFICATION ISSUES

Moving from a LAN-based environment to a web-

based environment as depicted above raises a variety of
issues. Hart et al (2006, p.106) raise the issue of web
applications that involve membership with the associated
concepts of identity, authentication and authorization.

IDENTITY

 There would be various types of users arriving at the
website. Game administrators, Player/participants, Website
administrator and casual browsers are some of the
categories of people who would be utilizing the website. In
order to present a customized environment to each user, it is

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 242

imperative to identify who the person is that is accessing the
website.

AUTHENTICATION

In order to establish the identity of the person, some
sort of authentication process needs to be employed. Certain
credentials such as email address and password combination
are normally used credentials. In order to authenticate a
user, these credentials must be stored on the server.

AUTHORIZATION

Once the login credentials have been verified, the
authorization process has to grant permissions to the user
based on the type of user it is. Thus a game administrator
will have access to all the simulation game instances that
she is managing. She will have access to all the input data as
well as performance results for all industries and/or
companies. She should also have access to game parameters
including initializing the game and modifying them. She
should have the ability to structure two different game
instances with different parameters though both instances
may be concurrently running. The player needs to have
access to only his inputs and his performance results.

PERSONALIZATION

The capability to personalize a site to reflect the
preferences of the currently logged-in user is necessary to
give the site a sense of community and belonging.

Thavikulwat and Chang (2007, p. 114) who adopt an
Internet-based approach (rather than a web-based approach)
state that “a common misconception is that “Internet-based
application must be installed on a computer before it can be
run, whereas the web-based application can be run simply
by navigating to its Website”. They further state that
“Accordingly, the Internet-based application can be used in
all instances where a Web-based application is useful, but

the converse is not true, especially without clever
programming”. While the above statements may be true in
single-instance simulation gaming solutions, it may not hold
for situations where multiple instances of the same
simulation game are running. If the server program is being
run from different IP addresses, (as would be the case if
multiple game administrators are running their own
simulation game instances on their computers) there would
need to be some sort of “pre-installation” on the client-side
computer that would identify the server that the client
program should connect to. In all of the web-based
environments with centralized servers, however, the above
issues of identity, authentication and authorization become
critical.

ISSUES TO BE ADDRESSED IN PORTING

TO A WEB-BASED ENVIRONMENT

In this paper, we discuss the issues raised in the earlier
section and others using Microsoft’s Visual Studio IDE as
the development environment. This presumes that the web
environment uses Microsoft-related infrastructure, i.e., the
operating system is a Windows-based system, the web-
server used is Internet Information Server (IIS), the .NET
framework 2.0 is installed on the Web Server and the
database used is MS-SQL server.

ISSUE 1: CONSISTENT SITE DESIGN

Consistent site design is a critical factor in the user
friendliness of a site and most websites on the Internet tend
to have a generic site layout. Most websites have a header
with the site/company logo and title, a menu bar on the left
(or top) with links that allow various functionality, a footer
with copyright information and other general information.

ASP.NET 2.0 provides tools such as Master page and

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 243

Content page system to generate this consistent layout.
Figure 4 shows the process of creating pages for a website
which have a consistent look and feel. So regardless of who
the user is or where the user is in the application,
consistency is maintained just in a traditional client-server
program on a LAN-based or standalone program. The menu
is created in ASP.NET by creating an XML file that
contains the items in a web.sitemap file. More of this is
explained in the section pertaining to Issue # 3.

ISSUE 2: AUTHENTICATION
ASP.NET provides three forms of authentication –

Forms authentication, Windows authentication and Passport
authentication. Forms authentication is the most widely used
method which does not place any restrictions on the client
infrastructure nor does it require a hook into other servers
such as Microsoft Passport server or Windows Active
Directory. Figure 5 shows how a login form that can be
created by using the ASP.NET Login Control.

 In this case, the username and password need to be in
the database along with other information related to the user
profile. The user profile would include the user preferences,
user permissions and the user role –game administrator,
website administrator or player. Once logged in, it is this
user profile that will be used to provide appropriate
authorization and customization/personalization of the web
interface.

ISSUE 3: AUTHORIZATION
It is to be kept in the mind that generic information

about the simulation game will be provided in the main page
for casual browsers. It would be unreasonable to require
casual visitors to the website to login. A login should be
required only for users with specific roles. ASP.NET
accomplishes this by allowing access to entire folders using
permissions as listed in the Web.config file. Below is the
snippet of code that allows this functionality.

<?xml version=”1.0” encoding=”utf‐8”?>
<configuration>
 <system.web>
 <authorization>
 <allow roles=”gameadministrator,
gameplayer” />

 <deny users=”*”>
 </authorization>
 </system.web>
</configuration>

This file resides in the folder that contains all the game
functionality for administrators and users alike. All other
users are denied from entry into this folder. This is the basic
level of authorization that distinguishes between causal
visitors to the site and other users who actually play the
game or administer it. The other issues that arise are
visibility, access and authorization. Visibility and access are
control by both the Web.sitemap and the Web.config file.
Below is the snippet of code in the Web.sitemap file that
shows how a particular page or link is made visible and/or
accessible to specific people.

<siteMapNode title “Enter Decisions”
url=”player/enterdecision.aspx” roles=”gameplayer,
gameadministrator”>

<siteMapNode title “View Results”
url=”player/viewresults.aspx” roles=”gameplayer,
gameadministrator”>

<siteMapNode title “Initialize Game Parameters”
url=”administrator/initialize.aspx”
roles=”gameadministrator”>

<siteMapNode title “Run Game”
url=”administrator/rungame.aspx”
roles=”gameadministrator”>

<siteMapNode title “Change Game Parameters”
url=”administrator/changeparameters.aspx”
roles=”gameadministrator”>

The above code will ensure that the “Enter Decisions”

and “View Results” links are visible to both the game player
and the game administrator. However the other links such as
running the game or initializing the game parameters are
visible only to the game administrator. In addition to
visibility of the link, access to the functionality is also
restricted at the folder level by the entries in the Web.config
file. This can be done as shown below.

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 244

<location path=”gameadministrator/rungame.aspx”>
 <system.web>
 <authorization>
 <allow roles=”gameadministrator” />
 </authorization>
 </system.web>
</location>

If the above snippet of code is added to the Web.config

file, this ensures that only those people whose role is
defined as a “gameadministrator” will be able to access this
page.

ISSUE 4: DATABASE DESIGN

All of the above discussion assumed that some basic
information already exists in the database. Primary tables in
the database will include:

1. A user table which has all user related information
including user preferences and roles.

2. A parameter table with all initial values for the
game to be started.

3. A game administrator and game instance table that
tracks each game instance created and the
associated administrator.

Beyond this there would be no other information in the
database. Each time a new instance of the simulation game
is created, a new table will have to be created that would
have the structure of the game including the number of
industries and/or companies as well as the teams as well as
individuals associated as game player/participants with that
industry/company. This functionality would have to be
available to each game administrator. For each such game
instance, as the simulation progresses there will be tables
created for decisions, performance results, and history
information. The new tables would therefore be

1. An industry/company table – which would contain
data about the number of industries/companies and
the associated teams and individual users.

2. A decision table – which would include values for
every decision for every period.

3. A performance results table – which would include
all the performance parameters

4. A history table – which would store all history
information needed to advance the simulation to
the next period.

Thus each simulation game instance will generate
multiple tables and each of them could be relatively large
depending on the number of industries and the number of
periods simulated for. A decision needs to be made whether
each simulation instance will therefore be an independent
database or will all these tables be in one large database
with the different tables associated with various game
instances being appropriately labeled and identified. There
are pros and cons to each approach. Creating a single
database would mean that all information is available in one
database and the capability exists to access any and all
information tempered, of course, by the persons role and the
attendant permissions. This kind of flexibility might allow a
game instructor to perform cross-simulation-instance

analyses and thereby gain valuable insights into differences
in performance. This might, in turn, aid her in her quest to
further refine her pedagogy. On the other hand databases
that tend to grow large might falter in the area of
responsiveness. This would be a serious issue that would
argue against adopting a large database approach.
Responsiveness could be maintained and tremendous
scalability would exist regardless of the number of
simulation game instances that were created. It might still be
possible to do cross-instance analyses though the coding
might be quite cumbersome and tedious. Another issue is
the licensing of databases. Many ISPs provides rates
depending on the number of databases used. If the number
of databases keeps increasing as time goes on, the cost of
maintaining such a large number might be prohibitively
expensive. Admittedly, one could retire older databases and
take them offline to mitigate the cost impact of this
approach.

CONCLUSION

We have identified some significant issues that need to

be addressed in any move from a LAN-based simulation
gaming environment to a web-based environment. While the
latter offers convenience, universal access, powerful
technology and functionality such is move is a non-trivial
issue. Any game developer would be well advised to
consider all the issues and design the web-based
environment with proper fore-thought. We have identified
four primary issues that need to be considered including site
design, authentication, authorization and database-related
issues.

The paper has confined its analysis to simulation
gaming environments that fall under the fixed scaling,
administrator-driven, synchronized simulations. The above
analysis would nevertheless, apply to most other simulation
games regardless of the category they fall under vis-à-vis
the other dimensions including purpose, control and
interaction, representational system or scoring. While this
paper has identified some key issues that need to be
addressed, other issues not discussed here might arise if one
were to consider an unsynchronized simulation or one that
was clock or activity-driven or one that had flexible scaling,
the most complex one being continuous scaling simulations.
To the best of the author’s knowledge most business
simulation games extant today would fall under the ambit of
this paper. However, to further advance the theoretical
knowledge of simulation gaming, other categories not
considered here are interesting research areas that beckon.

REFERENCES

Crookall, D., Martin, A., Saunders, D., & Coote, A. (1986).

Human and computer involvement in simulation.
Simulation & Gaming, 17, 345-375

Forio Simulations. (2007).
http://forio.com/resources/category/forio-simulations/,
accessed on October 31st, 2007.

http://forio.com/resources/category/forio-simulations/

Developments in Business Simulation and Experiential Learning, Volume 35, 2008 245

Hall, Jeremy J.S.B. (2005). “Computer Business Simulation
Design: The Rock Pool Method”. Developments in
Business Simulations and Experiential Learning, Vol.
32, 144-154.

Hart, C., Kauffman, J., Sussman, D., Ullman, C. (2006).
Beginning ASP.NET 2.0. Wiley Publishing,
Indianapolis, Indiana.

Pillutla, S. (2003). “Creating a Web-based simulation
gaming exercise using PERL and JavaScript”.
Simulation and Gaming, Vol. 34, 112-130.

Thavikulwat, P. (1999). Developing computerized business
gaming simulations. Simulation and gaming, Vol. 30,
361-366.

Thavikulwat, P. (June 2004). “The architecture of
computerized business gaming simulations”. Simulation
and Gaming, Vol. 35, No. 2, 242-269.

Thavikulwat, P. and Chang, J. (2007). “Applying .NET
Remoting to a Business Simulation”. Developments in
Business Simulations and Experiential Learning, Vol.
34, 113-118.

	Table of Contents
	Volume 35, 2008
	Linking Team Covenants To Peer Assessment Of Simulation And Experiential Performance
	Using the Balance Scorecard Approach: A Group Exercise
	IndoAmerican Enterprises
	Class Size and Game Design
	Implementation Of Effective Experiential Learning Environments
	Simulation Sensemaking: The BusinessWeek Approach To Effective Debriefing
	A Lesson in Hide-And-Go-Seek: A Team Building Game
	Thoughts On How To Motivate Students Experientially
	Experiential Learning Is Not Just Experiential Teaching: Measurement of Student Skill Acquisition via Assessment Centers
	ABSEL Redux: Reflections after a 25 Year Hiatus
	College Student's Expectations of Technology- Enhanced Classrooms: Comparing 1996 and 2006
	The Business Student Satisfaction Inventory (BSSI): Development and Validation of a Global Measure of Student Satisfaction
	The "Big Picture Question" Project: Explorations in Teaching Creativity within a Force-Field Research Framework
	"Viva Voce": Oral Exams as a Teaching & Learning Experience
	Internships And Occupational Socialization: What Are Students Learning?
	Does Learning Occur in One-Shot, Non-Cooperative Games?
	Beliefs and Behavior, an Ancient Perspective and Modern Application
	Developing Enterprise Culture Among the Students Through Intercollegiate Competitions: A Case of Student Enterprise Competition (SEC) 2007
	Student Views of Management Skills and Their Future Careers after Using Business Simulations
	Back to the Future: Gender Differences In Self-Ratings of Team Performance Criteria
	A Case for Experiential Learning: Using Central Europe as a Classroom
	Modeling Strategic Opportunities in Product-Mix Strategy: A Customer- Versus Product-Oriented Perspective
	Assessment in the Modern Large High-Tech Classroom
	Target Profit Pricing With the Web-Based Breakeven Analysis Package
	Are the Business Simulations We Play Too Complex?
	Shared Experience as Incentive for Horizontal Integration in Business Simulations
	Affinity Propagation: A Clustering Algorithm for Computer-Assisted Business Simulations and Experiential Exercises
	Marketing Simulation Results as Embedded Forms of Program Assessment
	Human and Agent Playing the "Beer Game"
	Issues in Porting a LAN-based Total Enterprise Simulation Game to a Web-based Environment
	Partners or Competitors? A B2B Simulation
	Evaluation Model of the Global Performance of a Management Simulation for the Academic Environment
	Applying Bloom's Revised Taxonomy In Business Games
	Do Price Strategies Work in Business Simulations?
	Early Japanese Gaming Simulation Efforts
	Using Par Players to Enhance Learning in Business Simulations
	Corporate Cartooning: The Art of Computerized Business Simulation Design
	Should Business Game Players Choose Their Teammates: A Study with Pedagogical Implications
	Goal Orientation and Simulation Performance
	Design and Demonstration of an Online Managerial Economics Game with Automated Coaching For Learning and Graded Exercises for Assessment
	Are Good Strategy Decisions Consistently Good? A Real-Time Investigation
	Active Learning 2.0 or Wiki is not a 4-letter Word
	Comparing Student Learning in Online and Classroom Formats of the Same Course
	How Do We Get To Tomorrow? The Path to Online Learning
	Similar Media Attributes Lead to Similar Learning Outcomes
	Facilitating Business Gaming Simulation Modeling

