
Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 113

APPLYING .NET REMOTING TO A BUSINESS SIMULATION

Precha Thavikulwat
Towson University

pthavikulwat@towson.edu

Jimmy Chang
Hong Kong Polytechnic University

tcchangj@inet.polyu.edu.hk

ABSTRACT

We consider Microsoft’s .NET Framework in relation to its
alternative, Sun Microsystems’ Java Virtual Machine. We
discuss principal issues for business simulation developers
who would use .NET remoting technology. We explain how
we applied the technology to an existing computer-assisted
business simulation such that the application is available in
both a local-area-network pure-Windows version and an
Internet-based .NET version. Problems are discussed, and
suggestions given for first-time and experienced developers
of computerized business simulations.

INTRODUCTION

From time to time, developers of computerized business

simulations are confronted with new technologies to which
they must respond. Thus, the mainframe computer was
superseded by the microcomputer and Microsoft’s Disk
Operating System (DOS) was superseded by Microsoft
Windows. Web browsers followed, and with it, Sun
Microsystems’ Java Virtual Machine (JVM) and
Microsoft’s .NET Framework (DNF).

Both JVM and DNF are software components that can
be added to a computer’s operating system. JVM, first
released in late 1995 (Byous, 1998), is available for
installation with Linux, Microsoft Windows, and other
operating systems. DNF, first released a few years later, is
available for fully featured installation with Microsoft
Windows only (Richter, 2000), although the company
apparently plans to make it available in the future for other
operating systems. Both JVM and DNF are attempts to
make advanced programming easier for developers,
especially in applications that involve the Internet.

Programs written for JVM and DNF differ from their
predecessors in that the predecessor programs were
compiled directly into machine instructions that would be
read by the computer’s processor, whereas the successor
programs are compiled into intermediate instructions that
would be preprocessed by the JVM or the DNF, as the case
may be, before being sent to the processor. The
preprocessing step allows the preprocessor to assure security
by screening out disallowed instructions and to insert

installation-specific instructions to perform featured tasks,
such as optimizing memory usage and accessing data
through the Internet. Assuring security and optimizing
memory usage are nice features, but the feature of JVM and
DNF that developers of business simulations should find the
most attractive is their simplification of data access through
the Internet.

Pillutla (2003) has classified applications that access
data through the Internet into two categories: Web-based
and Internet-based. Web-based applications are embedded
within a browser. Internet-based applications access data
through the Internet without a browser. Browsers
themselves are Internet-based applications. JVM and DNF
simplify the development of both Web-based and Internet-
based applications. As such, they make programming such
applications easier, allow applications to link more
effectively with databases and research tools, and
democratize usage by enabling mass participation from
distant sites (Dasgupta & Garson, 1999).

Both JVM and DNF are designed for object-oriented
programming, wherein data and their associated operations
are packaged together into base classes that can be
incorporated into more refined classes. The concept is
relatively new, but one already in use by some developers of
computerized business simulations (Duserick, Enke, Huang,
& Robana, 1999; Helge, Michael, & Joerg, 2004). In these
instances, the developers worked with JVM. To date, the
business simulation literature apparently contains no report
of developers working with DNF.

JVM and DNF are incompatible. To benefit from JVM,
developers must write code in the Java programming
language. To benefit from DNF, developers may write code
in any of the languages supported by Microsoft through its
respected suite of programming tools, Visual Studio. These
languages include Visual Basic, Visual C++, Visual C#
(pronounced “C sharp”), and Visual J# (pronounced “J
sharp”), but not Java. Thus, an application based on
computer code written in a language supported by Microsoft
before the advent of DNF can be modified to take advantage
of DNF features, but the same application will have to be
completely recoded in Java to take advantage of JVM
features. Complete recoding is more costly for larger
programs than it is for smaller ones, so developers of large

mailto:pthavikulwat@towson.edu
mailto:tcchangj@inet.polyu.edu.hk

Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 114

programs written in a language supported by Microsoft may
be inclined to forgo JVM in favor of DNF for that reason
alone.

For the developer of a new application, JVM offers the
allure of an open-source package supported by a strong
open-source community, whereas DNF offers an integrated
package supported by Microsoft, a company with a
distinguished reputation for well-integrated products. Each
side has many loyal adherents. Essentially, however,
developers of JVM applications have many choices of
vendors for development tools and services, whereas
developers of DNF applications have Microsoft’s Visual
Studio, which, as Thilmany (2004) notes, is found almost
everywhere and does almost everything.

Herein we show how DNF has been applied to an
Internet-accessing business simulation such that the
simulation runs as a Windows program independent of a
Web browser, without requiring installation on the client
computer. Accordingly, the simulation is an Internet-based
application. Moreover, the simulation accesses its data
through the Internet using an efficient data transmission
arrangement known as remoting. Principal issues of the
implementation will be considered first. Then the
characteristics of the business simulation will be described,
followed by an explanation of how the simulation has been
structured to use DNF for its Internet-accessing functions.
We describe the DNF-related problems that we encountered,
and we conclude with observations and suggestions for first-
time and experienced developers.

PRINCIPAL ISSUES

The principle issues of an application are those that are

decisive in determining how well the application functions.
For an application that will access its data over the Internet,
we identify four principal issues: deployment method, data
accessing method, server object lifetime management, and
program responsiveness.

DEPLOYMENT METHOD

A program that access data over the Internet can be
deployed as a Web-based application dependent on a
browser, or as an Internet-based application independent of
a browser. The Web-based application generally consists of
applets, packages of computer code on the client side that
interface with the user, and servlets, packages of computer
code on the server side that access data stored on the file
server. The Internet-based application consists of client-side
and server-side executable files, which in the Microsoft
Windows environment are files with EXE and DLL
extensions. Internet-based applications generally are less
cluttered and more responsive to user actions, because the
program is better able to control what the user sees and what
the user may do. Conversely, the browser of a Web-based
application surrounds the application with a frame that
reduces the application’s working area on the computer’s

screen, and gives the user Back and Forward buttons that
overrides the program’s control of the user’s view.

A common misconception is that the Internet-based
application must be installed on a computer before it can be
run, whereas the Web-based application can be run simply
by navigating to its Web site. For those using Microsoft
products, this is incorrect. Microsoft’s Internet Explorer (IE)
will run an application directly when the application’s
address is entered into IE’s address box, in the same way
that IE will bring up a Web site when that Web’s site
address is entered therein. Thus, entering
http://pages.towson.edu/precha/geonetd5.exe suffices to
launch the GEONETD5 application, provided the file,
GEONETD5.EXE, exists on the Web site
http://pages.towson.edu/precha. To guard against a
malicious application, IE and the operating system will
prompt the user several times before launching the
application. If the user responds affirmatively to the
prompts, the application will be launched as if it had
previously been installed. Installation before launch is
unnecessary. As for other browsers, such as Mozilla Firefox,
the user may be required to save the program file, which in
the above case would be GEONETD5.EXE, before
launching the application from the program file in a two-
step process.

Accordingly, the Internet-based application can be used
in all instances where a Web-based application is useful, but
the converse is not true, especially not without clever
programming. As a rule, however, clever programming
should be avoided whenever possible, because it tend to
give rise to code that is fragile, hard to understand, and hard
to maintain.

DATA ACCESSING METHOD

An Internet-based application can access the Internet by
two methods, Web servicing and remoting (Gregory, 2004).
In Web-servicing, data transmitted between the client
program running on the user side and the server program
running on the file server side are encapsulated in packages
prefaced by metadata, that is, information on the type of
data within the package. In remoting, data is transmitted
raw. Raw data is more compact. To assure that the remoted
data are meaningful to both programs, DNF requires both
client and server to share a common reference. In the
simplest arrangement, the common reference is a full copy
of the server program that is packaged with the client
program, but this arrangement makes the client
unnecessarily large.

A less known but more efficient and safer arrangement
is for both programs to share an interface, a small binary file
that contains only information sufficient for both programs
to understand the data they transmit (Rammer & Szpuszta,
2005). This arrangement is safer because it limits access to
the server program. Access would enable hackers to
disassemble the program in search of vulnerabilities.

http://pages.towson.edu/precha/geonetd5.exe
http://pages.towson.edu/precha

Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 115

SERVER OBJECT LIFETIME MANAGEMENT

Managing server object lifetimes is among the most
difficult of issues in an Internet-accessing application. When
a program is launched, program instructions are placed into
the computer’s memory as memory objects. For programs
that access local data, these memory objects are removed by
the operating system when the program terminates
normally. If the program terminates abruptly, often because
of an error in the instructions, its memory objects continue
to occupy memory space until the computer is rebooted.
Rebooting a single-user computer is generally a minor
concern, because most users turn off their computers every
day in any case. Rebooting a file server computer, however,
is a serious undertaking, because all clients that connect to
the server will be disrupted by the process. For this reason,
DNF objects that reside on the server have a five-minute
default lifetime that is renewed for two minutes whenever
the object is called into use by the client program.

If the client program should call the object after it has
been destroyed, because its lifetime has ended, the server
will respond with a no-object-available error message in
place of the data that the client program may have expected
to receive. If the programmer has not encoded a response to
the error message, the client program will terminate
abruptly, to the chagrin of the user. An effective response by
the client program to the no-object-available error message
is to call a “factory” object on the server, with instructions
to re-create the server objects required by the client program
and set the state of those objects to appropriate values
(Rammer & Szpuszta, 2005).

PROGRAM RESPONSIVENESS

Program responsiveness refers to user’s perception of
the time between the issuance of a command by the user and
the completion of that command by the computing system.
This perception is affected by processing speed and program
features that make the wait seem shorter.

Processing speed mostly depends upon how frequently
the program accesses its data. Before disk caching became
ubiquitous, programmers sought ways to minimize reads
and writes to disks, because these operations took so long
that they caused noticeable delays in program
responsiveness. Disk caching eliminated the problem in
most cases. It managed reads and writes, converting most
disk-accessing operations to memory-accessing operations
so that an operation that read from disk many times to
compute a result was not noticeably less responsive that an
operation that read from disk with less frequency.

When a program accesses its data through the Internet,
the physical distance between the client program and its data
files coupled with the burden of packing and unpacking the
data for transmission through the Internet slows down reads
and writes so that the delays of these operations have
become noticeable again. The program must work around
these delays by performing data-accessing operations in the
background, encoding data-intensive routines into the server

program, and stripping unessential items from the data that
is transmitted. These operations are difficult to program
because they are difficult to debug. A development system
that includes a powerful debugger will make the task much
easier.

THE BUSINESS SIMULATION

The Internet-based business simulation that we

developed with DNF is GEO. It is a computer-assisted
simulation (Crookall, Martin, Saunders, & Coote, 1986).
Like the more common computer-controlled simulation, a
computer-assisted simulation supports a high level of
participant-to-participant interaction. The difference
between the two is in the control of events. Control rests
with the computer in the computer-controlled simulation; it
rests with the participants in the computer-assisted
simulation.

The purpose of giving participants control over events
is to give them direct experience with critical processes,
such those of trade, investment, employment, and superior-
subordinate relations. In the simulation, these processes
were represented genotypically (Thavikulwat, 2004). Thus,
when participants sold products, they sold them to other
participants, rather than to an algorithm. When they
invested, they bought shares in each other’s companies.
When they employed, they employed each other. When they
related to each other as executives of a company, their roles
were computer-enforced so that superiors controlled the
subordinate’s compensation, could review the subordinate’s
work, and could dismiss the subordinate at will.
Accordingly, the markets for products, stocks, and
employment are real (Thavikulwat, 1997). The approach is
constructivistic, emphasizing social interaction, rather than
instructivistic, which emphasizes description and examples
(Leemkuil, de Jong, de Hoog, & Christoph, 2003).

A computer-controlled simulation generally requires
decisions to be submitted by predetermined deadlines, but a
computer-assisted simulation generally processes each
decision as it is submitted. As a consequence, easy access
by participants to the computer is essential in a computer-
assisted simulation. Ideally, access should be available at
any time, from anywhere, and simultaneously to all
participants. Given today’s technology, this means that the
simulation software should be able to access its data over
the Internet.

GEO has been in use for over a decade. It was
originally coded in the C programming language for the
DOS platform, and later upgraded to Windows C++ for the
Windows platform. When DNF became available, the
simulation was modified so that it could be compiled into
two executable versions, a pure-Windows version without
DNF that accessed its data through a local area network and
an Internet-based version with DNF. Compiling the same
code into the two different executable versions was made
possible by a feature of DNF that Microsoft calls It Just
Works (IJF). IJF is available for programs coded in

Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 116

Windows C++ only. Programs coded in Windows Basic,
generally accepted as the most popular of the Microsoft-
supported languages, cannot use this feature.

A schematic diagram of the two-version system is
shown in Figure 1. As the figure shows, the system
consisted of three programs: a local-area-network program,
an Internet-accessing client program, and a server program.
The local-area-network program links together a user-
interface module and a file-accessing module to form an
executable file with an EXE extension. The Internet-
accessing client program adds the client-side DNF bridge
module to the two modules of the local-area-network
program, forming another executable file with an EXE
extension also. Unlike the local-area-network program,
however, the Internet-accessing client must be accompanied
by the common-reference DLL, an essential component of
remoting. The server program consists of the server-side
DNF bridge module and the same file-accessing module of
the other two programs. The linked combination is a
program file with a DLL extension. This server program
also must be accompanied by the common-reference DLL.

The server program was designed to work with
Microsoft’s Internet Information Services (IIS). This
arrangement allows the program to be updated by simply
replacing it with a new copy, without needing the
administrative privileges necessary to restart a Windows
service. Administrative privilege is necessary only initially,

to set up the server application within its own folder on the
server. Subsequently, those given full rights to the folder are
able to modify the folder’s content at will. IIS automatically
detects the modifications and makes them effective
immediately.

The two-version system greatly simplified debugging,
generally considered the most time-consuming stage of
computer program development. The most complex codes
were associated with the pure-Windows file accessing
module. These codes were tested first in the pure-Windows
local-area-network program, where operations could be
tracked with finer granularity than is possible with the DNF-
based server program. Codes that involved the DNF were
isolated into a few files, thereby facilitating the tracing of
errors resulting from those codes.

The two-version system also enabled the gradual
deployment of the Internet-accessing DNF version.
Participants were given access to both versions. They could
use either version when they had access to a computer
connected to the local area network. They were able to use
the Internet-accessing version otherwise. Thus, the Internet-
accessing version made access more convenient. Its
responsiveness and reliability were not critical to the
exercise.

The Internet-accessing version was put to a critical test
when it was used as the sole version in a two-month
exercise that involved 42 participants from the opposite side

Pure-
Windows

File
Accessing

Module

Client-
Side
DNF

Bridge
Module

Local-
Area-

Network
Program

Server-
Side
DNF

Bridge
Module

Pure-
Windows

File
Accessing

Module

Server
Program

Internet-
Accessing

Client
Program

Common
Reference DLL

Common
Reference DLL

Internet

Pure-
Windows

User
Interface
Module

Figure 1: Two-Version Internet Remoting System

Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 117

of the world, where the distance between the client program
and the server program was the greatest. The major DNF-
associated problems encountered in this test were as
follows:

• Failure to launch
• Outdated client
• Locked data
• Server busy message

FAILURE TO LAUNCH

A directly executable DNF file appears no different
from a directly executable pure-Windows file. Both have an
EXE extension. Invoking a DNF executable when DNF has
not been installed on the client gives rise no response.
Although participants were advised that DNF must be
installed on the computer before the executable will run,
some either missed the instructions or were unable to do the
needed installation.

This problem could not be resolved by having the
program pop-up a dialog box that would inform the user that
DNF was needed, because no part of the program would run
without DNF. It can be resolved by having the user launch a
pure-Windows pre-application program that would check
for the presence of DNF before launching the DNF program
itself. We chose not to implement this solution, however, as
we deemed it to be not worth the added complication to the
package. The problem will resolve itself over time as
operating systems are upgraded, because Microsoft has
already made DNF a prepackaged part of its Windows
operating system.

OUTDATED CLIENT

When participants run a local-area-network program
through a link to the program, the program can be updated
with assurance that all participants will subsequently be
running the updated program. The same assurance does not
apply to a universal resource locater (URL) address that
points, over the Internet, to the DNF program. In this latter
case, when the URL is entered on the browser’s address
box, the browser will either prompt the user to choose
between running the program and saving it, or the browser
will give the user the single option of only saving the
program. If the user saves the program before running it, the
user may subsequently choose to run the saved program,
which may then be an outdated version if the original
version has been updated.

The possibility that the client may be outdated made the
task of updating the application while the exercise was in
progress difficult. Changes to the server program had to
allow for the possibility that it would be serving outdated
client programs as well as current ones. In some instances,
the required updates were such that they could not be made
compatible with outdated client programs. Nevertheless,
these instances did not appear to greatly inconvenience
participants, as only a few complaints traceable to an
outdated client were received, the participants having been

warned early on that they should not run a client program
that was downloaded at an earlier time.

LOCKED DATA

The easiest way to adapt a program that accesses its
files through a local area network to one that accesses its
files through the Internet is to redirect all low-level file-
accessing operations, such as those that open, lock, read,
write, unlock, and close files, to operations at a distance
through the Internet. When all low-level operations have
been re-directed, the program is functional over the Internet
without the need to redirect high-level operations, such as
those for computing the book values of a collection of
companies. The problem with this method is that high-level
operations can take so much time that the user, in
frustration, aborts the process, either through Window’s
Task Manager or by rebooting or turning off the computer.
If the process is aborted after data in a file has been locked
but before the data is unlocked, the file will remain locked
until either the server is rebooted or until an indeterminate
time after the server object’s lifetime has ended. Locked
data can neither be read nor updated by any process other
than the one that set the lock, effectively stopping all
activities that must access the data.

Anticipating this problem, we coded the locking and
unlocking operations so that they were performed on proxy
values that represented no data, rather on real data values.
This permitted a data recovery program to read all of the
data in the locked files, from which it could reconstruct the
files. Accordingly, our immediate resolution of the problem
was to use the data recovery program to recreate files and
folders of the simulation at another location on the server,
after which we redirected the server program to the new
location. The solution is workable, because the
circumstances that lead to locked data are infrequent. Over
the long term, as an increasing number of high-level file-
accessing operations are moved from the client program to
the server program, the problem of locked data will fade.
Then, whenever the server program performs an operation
that requires locking data, the same program will unlock the
data before returning values to the client program, in which
case the lock-out state will never be for an extended time.

SERVER BUSY MESSAGE

The Windows operating system pops-up a message box
with a server-busy message when the wait for a response
from the server is long. Long server response times were
infrequent when participants lived within automobile
driving distance of the file server, so the occasional server-
busy message was tolerable. In the situation when
participants were at the opposite side of the world from the
file server, however, the server-busy message appeared
frequently. It became a substantial irritant.

The usual Windows documentation does not cover this
message box. An Internet search of the issue led to a posting
with the advise that the dialog box could be turned off by

Developments in Business Simulation and Experiential Learning, Volume 34, 2007

 118

setting a little-known Enable-Busy-Dialog operation to
false.

This is an example of the many poorly documented
issues that one inevitably encounters in applying a new
technology. Fortunately, when the issue involves a
technology associated with Microsoft, the likelihood that
others have posted a resolution of the issue somewhere on
the Internet is high. An Internet search based on the key
words that describe the issue usually leads to advice on how
the problem should be resolved, as it did in this case.

CONCLUSION

DNF is among the latest of the technologies that have

become available to developers of computerized business
simulations. We have discussed the principal issues that
developers who choose to incorporate the technology into
their applications must resolve, and we have given an
account of the problems that we encountered when we used
an Internet-based simulation with DNF in an exercise that
involved participants from one side of the world accessing
the simulation data on a server at the other side. We have
found that the problems are manageable.

DNF is an attractive technology for developers of
business simulations who know a Microsoft-supported
computer language well. For many, the language of choice
is Visual Basic. Although the application presented here was
developed in Visual C++, the issues and problems we have
discussed apply just as well to DNF-based programs written
in Visual Basic, except that all code written in Visual Basic
for a pure-Windows program must be recoded for DNF if
the program will use DNF technology. Microsoft’s IJW
feature, which permits linking together pure-Windows
modules with DNF modules into a single DNF-based
program, is not supported for code written in Visual Basic.

DNF substantially eases the problem of having a
program access its data over the Internet. Making the
program functional is done with only a few lines of code, so
it can be said to be easy. Making the program function well,
however, remains difficult, because server objects have
lifetimes that must be managed, because operations must be
carefully divided between those performed by the client and
those performed by the server to maximize program
responsiveness and minimize server resource requirements,
and because literature on DNF is fragmented. Nonetheless,
the difficulties are surmountable, as has been our
experience.

To developers, we offer the following suggestions.
First-time developers of business simulations should try C#.
The language is simple, like Java, but powerful, like C++.
Although Visual C++ is our preferred language, learning to
use it requires an extensive effort that is difficult to justify
given the C# alternative. Developers who have worked with
JVM, as we also have, should try DNF. The promise of
JVM is that it will run everywhere; the promise of DNF is
that it will do everything. Neither completely lives up to its
promise, but for the usual business gaming simulation

application, running everywhere is superfluous. Running on
Windows is enough. Doing everything, however, is a
godsend.

REFERENCES

Byous, J. (1998). Java technology: The early years. Sun

Microsystems, Inc. Available:
http://java.sun.com/features/1998/05/birthday.html.

Crookall, D., Martin, A., Saunders, D., & Coote, A. (1986).
Human and computer involvement in simulation.
Simulation & Gaming, 17, 345-375.

Dasgupta, S., & Garson, G. D. (1999). Guest editorial:
Internet simulation/gaming. Simulation & Gaming, 30,
20-22.

Duserick, F., Enke, E., Huang, W., & Robana, A. (1999).
Financial simulation using distributed computing
technology. Developments in Business Simulation and
Experiential Learning, 26, 52-57. Available
http://www.absel.org.

GEO. Thavikulwat, P. (2006). Demo available:
http://pages.towson.edu/precha/geonetd5.exe.
(Department of Management, Towson University, 8000
York Road, Towson, MD, USA).

Gregory, K. (2004). Visual C++ .NET 2003. Indianapolis,
IN: Sams Publishing.

Helge, F., Michael, J., & Joerg, B. (2004). Controlling the
complexity and orienting target groups by a modular,
server-based business game system. Developments in
Business Simulation and Experiential Learning, 31, 1-
7. Available http://www.absel.org.

Leemkuil, H., de Jong, T., de Hoog, R., & Christoph, N.
(2003). KM QUEST: A collaborative Internet-based
simulation game. Simulation & Gaming, 34, 89-111.

Pillutla, S. (2003). Creating a Web-based simulation gaming
exercise using PERL and JavaScript. Simulation &
Gaming, 34, 112-130.

Rammer, I., & Szpuszta, M. (2005). Advanced .NET
remoting: Everything you need to know about .NET
Remoting. Berkeley, CA: Apress.

Richter, J. (2000, September). Microsoft .NET Framework
delivers the platform for an integrated, service-oriented
Web. MSDN Magazine. Available:
http://msdn.microsoft.com/msdnmag/issues/0900/frame
work/print.asp.

Thavikulwat, P. (1997). Real markets in computerized top-
management gaming simulations designed for
assessment. Simulation & Gaming, 28, 276-285.

Thavikulwat, P. (2004). The architecture of computerized
business gaming simulations. Simulation & Gaming,
35, 242-269.

Thilmany, C. (2004). .NET Patterns: Architecture, design,
and process. Boston: Addison-Wesley.

http://java.sun.com/features/1998/05/birthday.html
http://www.absel.org/
http://pages.towson.edu/precha/geonetd5.exe
http://www.absel.org/
http://msdn.microsoft.com/msdnmag/issues/0900/framework/print.asp
http://msdn.microsoft.com/msdnmag/issues/0900/framework/print.asp

	Table of Contents
	Volume 34, 2007
	Experiential Teaching May Lead To Experiential Learning
	The Role Of Learning Versus Performance Orientations When Reacting To Negative Outcomes In Simulation Games: Further Insights
	An Analysis Of The Interaction Of Firm Demand And Industry Demand In Business Simulations
	Consistency Of Participant Simulation Performance Across Simulation Games Of Growing Complexity
	Assessing And Incentivizing Learner Contribution And Performance Excellence: Creating Win-Win Evaluation Options
	The Technological Impact Analysis: A Research-Based Exercise To Heighten Learners' Technological Sensitivity
	Beginnings: How We Start the Semester and Individual Classes : A Roundtable Discussion
	Simulation Performance and Its Effectiveness As A PBL Problem: A Follow-Up Study
	The Use of Multimedia Learning Tools to Facilitate Online Learning of Business Statistics
	Forecasting Accuracy And Learning: A Key To Measuring Business Game Performance
	Panel Discussion: Alternative Ways of Using the Internet for Business Simulations to Input Decisions, Process, and Present Financial and Economic Data Output
	Absel Research -- One Additional Perspective On Where We Are And Where We Have Come From
	Assessing participant learning in a business simulation
	From Case Presentation To Case Facilitation: How Assessment Changed The Capstone Course
	The Use Of Computer-Assisted, Interactive Role-Play Simulation In Hong Kong
	Corporate Positioning: A Business Game Perspective
	Demonstration Of A Computer-Assisted Global Business Simulation
	Applying .NET Remoting To A Business Simulation
	Assessing Emotional Intelligence: The EQ Matrix Exercise
	Outcomes And Observations Of An Extended Accounting Board Game
	The Use Of Learning Styles Questionnaire In Hong Kong
	Forming Teams For Classroom Projects
	Online Budgeting And Marketing Control With The Proforma Analysis Package
	The Effect Of Experiential Learning Experiences On Management Skills Acquisition
	Students' Perceptions on the Individual Managerial Performance
	Orderness: A New Definition Of Alignment
	An Exploratory Study Of The Efficacy Of Servsafe® Online
	Team Behavior And Team Success Results From A Board Game Simulation
	Telecommuting Internships - Do They Work?
	The WEE GAME: A Pre-Game
	Effects On Learning When Students Have Information About Games And Their Outcomes When Playing Them
	Assessment And Simulations: Measuring The Academic Learning Compacts Within
	Dangerous Business: An Interactive Ethics Case Activity
	The Paradise Islands
	Assessing And Applying ﬁAppropriateﬂ Conflict Management Styles
	Distance Learning In Communication: Blended Or On-Line? Developing An On-Line Advanced Communication Course
	World Café: Simulating Seminar Dialogues in a Large Class
	The Programming Game: An Exploratory Collaboration Between Business Simulation And Instructional Design
	The Canary Principle: An Alternative Model for Providing Real-Time Coaching in an On-Line Discussion Environment
	Assessing Character Development Using A Direct-Approach Business Ethics Exercise
	Persistence Of Decisions By Simulation Game Participants
	The Invalidity of Profit = f(Product Quality) PIMS Validation of Marketing Games
	A Study of The Applicability of The Perceptions of Organizational Politics Scale (POPS) For Use in The University Classroom
	The ROI Of Connected Projects: A Payroll Example
	Initiation of Research on Gaming Simulation in Japan
	Inappropriate Use of Citations and Corrupting the Body of Knowledge: Accepting Urban Legends as Truth
	An Exploration Of The Perceived Value Of Highly Socio-Inductive Learning
	How "Whole" Is Whole Person Learning? An Examination Of Spirituality In Experiential Learning
	Modeling Outsourcing and Strategy Alignment into a Business Game
	Successful Integration Of Webct Into A Small Business School
	The Thinking Steps Model In Game Theory: A Qualitative Approach In Following The Rules
	The Application Of Means-End Theory To Understanding The Value Of Simulation-Based Learning
	Armchair Travel: An active learning approach to increasing global awareness and participant self-efficacy
	Goldratt's Thinking Process: Is there a place for it in the Total Enterprise Simulation
	Assessing And Developing Student Skills Using a Group Exercise
	Computer Business Simulation Design: Novelty & Complexity Issues

